Preview

Siberian journal of oncology

Advanced search

Orthotopic models in cancer research: a literature review. To the 150th anniversary of the first successful serial tumor transplantation in animals

https://doi.org/10.21294/1814-4861-2025-24-6-160-172

Abstract

Background. Transplantation models, including allografts and xenografts are crucial in oncology research because they help study the mechanisms of carcinogenesis and assess the activity of promising antitumor agents.

Objectives: 1) to conduct a traditional analysis of scientific literature devoted to orthotopic transplantation in laboratory animals using various sources of tumor material, 2) to describe the main advantages and limitations of orthotopic models, 3) to provide practical recommendations for researchers dealing with orthotopic transplantation models.

Material and Methods. A search was conducted in PubMed and Google Scholar bibliographic databases. The review included relevant publications available for search until April 30, 2025.

Results. Compared to transplantation of tumor cell suspensions cultured in vitro, transplantation of solid tumor fragments ensures preservation of the clonal heterogeneity of the tumor, components of its microenvironment and extracellular matrix, which support engraftment and tumor growth. Compared to subcutaneous transplantation, orthotopic models offer a more realistic depiction of the complex interactions in the tumor-host system and the pathological characteristics of human cancers, particularly those involving metastasis. Because orthotopic tumors exist within their natural environment, the evaluation of their response during preclinical research is more likely to be translatable in the initial phases of clinical trials.

Conclusion. Incorporating orthotopic models into non-clinical in vivo pharmacodynamic research programs improve the predicitve value and dependability of preclinical results and offer a chance to gain a more thorough understanding of the antitumor activity of the experimental treatment.

About the Authors

Ia. G. Murazov
Research and manufacturing company “Home оf Pharmacy”
Russian Federation

Iaroslav G. Murazov - PhD, Head of Laboratory of Oncopharmacology and Carcinogenesis, Researcher ID (WOS): AAY-9767-2021. Author ID (Scopus): 53863794000.

245, Zavodskaya St., Kuzmolovskiy t.s., Vsevolozhsk district, Leningrad oblast, 188663



M. A. Kovaleva
Research and manufacturing company “Home оf Pharmacy”
Russian Federation

Maria A. Kovaleva - PhD, Head of the scientific and methodological group, Author ID (Scopus): 36523050900.

245, Zavodskaya St., Kuzmolovskiy t.s., Vsevolozhsk district, Leningrad oblast, 188663



K. I. Kryshen
Research and manufacturing company “Home оf Pharmacy”
Russian Federation

Kirill L. Kryshen - PhD, Deputy Director for Science.

245, Zavodskaya St., Kuzmolovskiy t.s., Vsevolozhsk district, Leningrad oblast, 188663



M. N. Makarova
Research and manufacturing company “Home оf Pharmacy”
Russian Federation

Marina N. Makarova - MD, DSc, Director, Author ID (Scopus): 22951358800.

245, Zavodskaya St., Kuzmolovskiy t.s., Vsevolozhsk district, Leningrad oblast, 188663



V. G. Makarov
Research and manufacturing company “Home оf Pharmacy”
Russian Federation

Valery G. Makarov - MD, DSc, Professor, Scientific Supervisor, Researcher ID (WOS): F-8746-2016. Author ID (Scopus): 7401690256.

245, Zavodskaya St., Kuzmolovskiy t.s., Vsevolozhsk district, Leningrad oblast, 188663



References

1. Radulski D.R., Stipp M.C., Galindo C.M., Acco A. Features and applications of Ehrlich tumor model in cancer studies: a literature review. Transl Breast Cancer Res. 2023; 4: 22. doi: 10.21037/tbcr-23-32.

2. Shabad L.M. M.A. Novinsky – the founder of experimental oncology. Moscow, 1950. 260 p. (in Russian).

3. Jantscheff P., Beshay J., Lemarchand T., Obodozie C., Schächtele C., Weber H. Mouse-Derived Isograft (MDI) In Vivo Tumor Models I. Spontaneous sMDI Models: Characterization and Cancer Therapeutic Approaches. Cancers. 2019; 11(2): 244. doi: 10.3390/cancers11020244.

4. Guerin M.V., Finisguerra V., van den Eynde B.J., Bercovici N., Trautmann A. Preclinical murine tumor models: A structural and functional perspective. Settleman J., Kawakami Y., eds. Elife. 2020; 9: e50740. doi: 10.7554/eLife.50740.

5. Ireson C.R., Alavijeh M.S., Palmer A.M., Fowler E.R., Jones H.J. The role of mouse tumour models in the discovery and development of anticancer drugs. Br J Cancer. 2019; 121(2): 101–108. doi: 10.1038/s41416-019-0495-5.

6. Chulpanova D.S., Kitaeva K.V., Rutland C.S., Rizvanov A.A., Solovyeva V.V. Mouse Tumor Models for Advanced Cancer Immunotherapy. Int J Mol Sci. 2020; 21(11): 4118. doi:10.3390/ijms21114118.

7. Corbett T.H., Valeriote F.A., Baker L.H. Is the P388 murine tumor no longer adequate as a drug discovery model? Invest New Drugs. 1987; 5(1): 3–20. doi:10.1007/BF00217664.

8. Long Y., Xie B., Shen H.C., Wen D. Translation Potential and Challenges of In Vitro and Murine Models in Cancer Clinic. Cells. 2022; 11(23): 3868. doi: 10.3390/cells11233868.

9. Liu Y., Wu W., Cai C., Zhang H., Shen H., Han Y. Patient-derived xenograft models in cancer therapy: technologies and applications. Sig Transduct Target Ther. 2023; 8(1):160. doi: 10.1038/s41392-023-01419-2.

10. Rygaard J., Povlsen C.O. Heterotransplantation of a human malignant tumour to “Nude” mice. Acta Pathol Microbiol Scand. 1969; 77(4): 758–60. doi:10.1111/j.1699-0463.1969.tb04520.x.

11. Liu M., Yang X. Patient-derived xenograft models: Current status, challenges, and innovations in cancer research. Genes Dis. 2025; 12(5): 101520. doi: 10.1016/j.gendis.2025.101520.

12. Fernandez J.L., Årbogen S., Sadeghinia M.J., Haram M., Snipstad S., Torp S.H., Einen C., Mühlenpfordt M., Maardalen M., Vikedal K., Davies, C.L. A Comparative Analysis of Orthotopic and Subcutaneous Pancreatic Tumour Models: Tumour Microenvironment and Drug Delivery. Cancers (Basel). 2023; 15(22): 5415. doi: 10.3390/cancers15225415.

13. Zhang W., Fan W., Rachagani S., Zhou Z., Lele S.M., Batra S.K., Garrison J.C. Comparative Study of Subcutaneous and Orthotopic Mouse Models of Prostate Cancer: Vascular Perfusion, Vasculature Density, Hypoxic Burden and BB2r-Targeting Efficacy. Sci Rep. 2019; 9(1): 11117. doi:10.1038/s41598-019-47308-z.

14. Cai Y., Chen T., Liu J., Peng S., Liu H., Lv M., Ding Z., Zhou Z., Li L., Zeng S., Xiao E. Orthotopic Versus Allotopic Implantation: Comparison of Radiological and Pathological Characteristics. J Magn Reson Imaging. 2022; 55(4): 1133–40. doi: 10.1002/jmri.27940.

15. Murazov I.G., Agatsarskaya I.V., Kryshen K.L. B16 melanoma growth characteristic in C57BL/6 mice with various methods of obtaining tumor material and syngeneic tumor transplantation sites. Russian Journal of Biotherapy. 2024; 23(1): 28–36. (in Russian). doi: 10.17650/1726-9784-2024-23-1-28-36. EDN: QNYNBM.

16. Guo J., Cai J., Zhang Y., Zhu Y., Yang P., Wang Z. Establishment of two ovarian cancer orthotopic xenograft mouse models for in vivo imaging: A comparative study. Int J Oncol. 2017; 51(4): 1199–208. doi: 10.3892/ijo.2017.4115.

17. Zhang D., Wang Y., Liu L., Li Z., Yang S., Zhao W., Wang X., Liao H., Zhou S. Establishment and evaluation of ectopic and orthotopic prostate cancer models using cell sheet technology. J Transl Med. 2022; 20(1): 381. doi: 10.1186/s12967-022-03575-5.

18. Wang C., Xie G.M., Zhang L.P., Yan S., Xu J.L., Han Y.L., Luo M.J., Gong J.N. High Engraftment and Metastatic Rates in Orthotopic Xenograft Models of Gastric Cancer via Direct Implantation of Tumor Cell Suspensions. Cancers (Basel). 2024; 16(4): 759. doi: 10.3390/cancers16040759.

19. Erstad D.J., Sojoodi M., Taylor M.S., Ghoshal S., Razavi A.A., Graham-O’Regan K.A., Bardeesy N., Ferrone C.R., Lanuti M., Caravan P., Tanabe K.K., Fuchs B.C. Orthotopic and heterotopic murine models of pancreatic cancer and their different responses to FOLFIRINOX chemotherapy. Dis Model Mech. 2018; 11(7): dmm034793. doi:10.1242/dmm.034793.

20. Wang J., Liu X., Ji J., Luo J., Zhao Y., Zhou X., Zheng J., Guo M., Liu Y. Orthotopic and Heterotopic Murine Models of Pancreatic Cancer Exhibit Different Immunological Microenvironments and Different Responses to Immunotherapy. Front Immunol. 2022; 13: 863346. doi:10.3389/fimmu.2022.863346.

21. Aisenbrey E.A., Murphy W.L. Synthetic alternatives to Matrigel. Nat Rev Mater. 2020; 5(7): 539–51. doi: 10.1038/s41578-020-0199-8.

22. Geraghty R.J., Capes-Davis A., Davis J.M., Downward J., Freshney R.I., Knezevic I., Lovell-Badge R., Masters J.R., Meredith J., Stacey G.N., Thraves P., Vias M.; Cancer Research UK. Guidelines for the use of cell lines in biomedical research. Br J Cancer. 2014; 111(6): 1021–46. doi: 10.1038/bjc.2014.166.

23. Stribbling S.M., Beach C., Ryan A.J. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther. 2024; 257: 108631. doi:10.1016/j.pharmthera.2024.108631.

24. Thorel L., Morice P.M., Paysant H., Florent R., Babin G., Thomine C., Perréard M., Abeilard E., Giffard F., Brotin E., Denoyelle C., Villenet C., Sebda S., Briand M., Joly F., Dolivet E., Goux D., Blanc-Fournier C., Jeanne C., Villedieu M., Meryet-Figuiere M., Figeac M., Poulain L., Weiswald L.B. Comparative analysis of response to treatments and molecular features of tumor-derived organoids versus cell lines and PDX derived from the same ovarian clear cell carcinoma. J Exp Clin Cancer Res. 2023; 42(1): 260. doi: 10.1186/s13046-023-02809-8.

25. Zhang Y., Zhang G.L., Sun X., Cao K.X., Ma C., Nan N., Yang G.W., Yu M.W., Wang X.M. Establishment of a murine breast tumor model by subcutaneous or orthotopic implantation. Oncol Lett. 2018; 15(5): 6233–40. doi:10.3892/ol.2018.8113.

26. Murakami T., Zhang Y., Wang X., Hiroshima Y., Kasashima H., Yashiro M., Hirakawa K., Miwa A., Kiyuna T., Matsuyama R., Tanaka K., Bouvet M., Endo I., Hoffman R.M. Orthotopic Implantation of Intact Tumor Tissue Leads to Metastasis of OCUM-2MD3 Human Gastric Cancer in Nude Mice Visualized in Real Time by Intravital Fluorescence Imaging. Anticancer Res. 2016; 36(5): 2125–30.

27. Rao Q., You A., Guo Z., Zuo B., Gao X., Zhang T., Du Z., Wu C., Yin H. Intrahepatic Tissue Implantation Represents a Favorable Approach for Establishing Orthotopic Transplantation Hepatocellular Carcinoma Mouse Models. PLoS One. 2016; 11(1): e0148263. doi:10.1371/journal.pone.0148263.

28. Huo K.G., D’Arcangelo E., Tsao M.S. Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl Lung Cancer Res. 2020; 9(5): 2214–32. doi:10.21037/tlcr-20-154.

29. Hu H.T., Wang Z., Kim M.J., Jiang L.S., Xu S.J., Jung J., Lee E., Park J.H., Bakheet N., Yoon S.H., Kim K.Y., Song H.Y., Chang S. The Establishment of a Fast and Safe Orthotopic Colon Cancer Model Using a Tissue Adhesive Technique. Cancer Res Treat. 2021; 53(3): 733–43. doi:10.4143/crt.2020.494.

30. Xu Z.T., Ding H., Fu T.T., Zhu Y.L., Wang W.P. A Nude Mouse Model of Orthotopic Liver Transplantation of Human Hepatocellular Carcinoma HCCLM3 Cell Xenografts and the Use of Imaging to Evaluate Tumor Progression. Med Sci Monit. 2019; 25: 8694–703. doi:10.12659/MSM.917648.

31. Hage C., Hoves S., Ashoff M., Schandl V., Hört S., Rieder N., Heichinger C., Berrera M., Ries C.H., Kiessling F., Pöschinger T. Characterizing responsive and refractory orthotopic mouse models of hepatocellular carcinoma in cancer immunotherapy. PLoS One. 2019; 14(7): e0219517. doi: 10.1371/journal.pone.0219517.

32. Gan W., He Y.M., Hu F.L., Xu B., Liu Y.K., Wang A.J., He Y.Q., Zou G.W. Establishment of an orthotopic model of lung cancer by transthoracic lung puncture using tumor fragments. J Thorac Dis. 2023; 15(4): 2012–21. doi: 10.21037/jtd-23-439.

33. Tovar E.A., Essenburg C.J., Graveel A.C. In vivo Efficacy Studies in Cell Line and Patient-derived Xenograft Mouse Models. Bio Protoc. 2017; 7(1): e2100. doi: 10.21769/BioProtoc.2100.

34. Hwang H.K., Murakami T., Kiyuna T., Kim S.H., Lee S.H., Kang C.M., Hoffman R.M., Bouvet M. Splenectomy is associated with an aggressive tumor growth pattern and altered host immunity in an orthotopic syngeneic murine pancreatic cancer model. Oncotarget. 2017; 8(51): 88827–34. doi: 10.18632/oncotarget.21331.

35. Nishino H., Hollandsworth H.M., Sugisawa N., Yamamoto J., Tashiro Y., Inubushi S., Hamada K., Sun .Y.U., Lim H., Amirfakhri S., Filemoni F., Hoffman R.M., Bouvet M. Sutureless Surgical Orthotopic Implantation Technique of Primary and Metastatic Cancer in the Liver of Mouse Models. In Vivo. 2020; 34(6): 3153–57. doi: 10.21873/invivo.12149.

36. Zhang X., Li F., Yang H., Xu H., Wang A., Jia Q., Zhang L., Liu L. A novel simple suture method for establishing an orthotopic pancreatic cancer mouse model: a comparative study with two conventional methods. Am J Transl Res. 2024; 16(9): 4422–35. doi: 10.62347/JUDX2512.

37. Wang Y., Xue H., Cutz J.C., Bayani J., Mawji N.R., Chen W.G., Goetz L.J., Hayward S.W., Sadar M.D., Gilks C.B., Gout P.W., Squire J.A., Cunha G.R., Wang Y.Z. An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Invest. 2005; 85(11): 1392–404. doi: 10.1038/labinvest.3700335.

38. Chen W., Chen W.M., Chen S.X., Jiang L., Shu G.G., Yin Y.X., Quan Z.P., Zhou Z.Y., Shen M.J., Qin Y.T., Yang C.L., Su X.J., Kang M. Establishment of a visualized mouse orthotopic xenograft model of nasopharyngeal carcinoma. Cancer Biol Ther. 2024; 25(1): 2382531. doi: 10.1080/15384047.2024.2382531.

39. Leggat P.A., Smith D.R., Kedjarune U. Surgical applications of cyanoacrylate adhesives: a review of toxicity. ANZ J Surg. 2007; 77(4): 209–13. doi: 10.1111/j.1445-2197.2007.04020.x.

40. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Official Journal of the European Union. 2010; 53: 33–79.

41. De Vleeschauwer S.I., van de Ven M., Oudin A., Debusschere K., Connor K., Byrne A.T., Ram D., Rhebergen A.M., Raeves Y.D., Dahlhoff M., Dangles-Marie V., Hermans E.R. OBSERVE: guidelines for the refinement of rodent cancer models. Nat Protoc. 2024; 19(9): 2571–96. doi: 10.1038/s41596-024-00998-w.

42. Kiblitskaya A.A., Maksimov A.Y., Goncharova A.S., Nepomnyashchaya Ye.M., Zlatnik Ye.Y., Yegorov G.Y., Lukbanova Ye.A., Zaikina Ye.V., Volkova A.V. Variants of creating heterotopic and orthotopic PDX models of human colorectal cancer. Bulletin of Siberian Medicine. 2022; 21(3): 50–58. (in Russian). doi: 10.20538/1682-03632022-3-50-58. EDN: UOKYZC.

43. Anker J.F., Mok H., Naseem A.F., Thumbikat P., Abdulkadir S.A. A Bioluminescent and Fluorescent Orthotopic Syngeneic Murine Model of Androgen-dependent and Castration-resistant Prostate Cancer. J Vis Exp. 2018; 133: 57301. doi: 10.3791/57301.

44. Doyle K., Hassan A.E., Sutter M., Rodriguez M., Kumar P., Brown E. Development of a Simple and Reproducible Cell-derived Orthotopic Xenograft Murine Model for Neuroblastoma. In Vivo. 2024; 38(2): 531–38. doi:10.21873/invivo.13471.

45. Myers M.S., Kosmacek E.A., Chatterjee A., Oberley-Deegan R.E. CT vs. bioluminescence: A comparison of imaging techniques for orthotopic prostate tumors in mice. PLOS ONE. 2022; 17(11): e0277239. doi: 10.1371/journal.pone.0277239.

46. Colin D.J., Bejuy O., Germain S., Triponez F., Serre-Beinier V. Implantation and Monitoring by PET/CT of an Orthotopic Model of Human Pleural Mesothelioma in Athymic Mice. J Vis Exp. 2019; (154): e60272. doi: 10.3791/60272.

47. Baker M. Whole-animal imaging: The whole picture. Nature. 2010; 463(7283): 977–80. doi:10.1038/463977a.


Review

For citations:


Murazov I.G., Kovaleva M.A., Kryshen K.I., Makarova M.N., Makarov V.G. Orthotopic models in cancer research: a literature review. To the 150th anniversary of the first successful serial tumor transplantation in animals. Siberian journal of oncology. 2025;24(6):160-172. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-6-160-172

Views: 36

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)