Preview

Siberian journal of oncology

Advanced search

ASSESSMENT OF CYTOTOXIC EFFECT OF LOW-DIMENSIONAL ALUMINUM OXIDE STRUCTURES ON TUMOR CELLS

https://doi.org/10.21294/1814-4861-2016-15-6-35-41

Abstract

Nano-dimensional materials have recently attracted much attention of researchers with respect of their potential role in medicine. Physical mechanisms of interaction of nanostructures with tumor cells will help to develop new approaches to treatment of cancer. Recent studies have shown that the physicochemical properties of nanostructures, such as shape and size, are the important factors of their biological activity and toxicity. the purpose of the study was to determine the role of the shape of aluminum oxide nanostructures in their toxic effects on tumor cells. material and methods. Based on aluminum oxide phases, positively charged lowdimensional structures having different shapes (agglomerates of nanosheets, nameplates, and cone-shaped nanoaggregates) were synthesized with the help of aluminum nanoparticles. The resulting particles were characterized by transmission electron microscopy and Xray diffraction. The toxicity effect of low-dimensional aluminum oxide structures was assessed by MTT assay using A549, HeLa, MDA and PyMT cell lines. results. Agglomerates of nanosheets were shown to have the most pronounced toxic effect on the examined cell lines, while nanoplates and cone-shaped nanoaggregates were non-toxic. Conclusion. The toxic effect of agglomerates of 

About the Authors

M. S. Korovin
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk Polytechnic University
Russian Federation

Korovin Matvei S. - PhD, Researcher.

2/4, pr. Akademicheskiy, 634021-Tomsk, Russia. E-mail: msk@ispms.tsc.ru



O. V. Bakina
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk Polytechnic University
Russian Federation

Fomenko Alla N. - engineer.

2/4, pr. Akademicheskiy, 634021-Tomsk, Russia. E-mail: alserova@ispms.tsc.ru. SPIN-code: 4435-8053



A. N. Fomenko
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk Polytechnic University
Russian Federation

Bakina Olga V. - PhD, Researcher.

2/4, pr. Akademicheskiy, 634021-Tomsk, Russia. E-mail: ovbakina@ispms.tsc.ru. SPIN-code: 9002-1344



M. I. Lerner
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences; National Research Tomsk Polytechnic University
Russian Federation

Lerner Marat I. - Professor, Head of Laboratory.

2/4, pr. Akademicheskiy, 634021-Tomsk, Russia. E-mail: lerner@ispms. tsc.ru. SPIN-code: 3247-9864



References

1. Rao W., Wang H., Han J., Zhao S., Dumbleton J., Agarwal P., Zhang W., Zhao G., Yu J., Zynger D., Lu X., He X. Chitosan-Decorated Doxorubicin-Encapsulated Nanoparticle Targets and Eliminates Tumor Reinitiating Cancer Stem-like Cells. ACS Nano. 2015 Jun 23; 9 (6): 5725-40. doi: 10.1021/nn506928p.

2. Min Y., Caster J.M., EblanM.J., WangA.Z. Clinical Translation of Nanomedicine. Chemical Review. 2015; 115: 11147-11190. doi: 10.1021/acs.chemrev.5b00116.

3. Gowda R., Jones N.R., Banerjee S., Robertson G.P. Use of Nanotechnology to Develop Multi-Drug Inhibitors For Cancer Therapy. J Nanomedicine & Nanotechnology. 2013; 184-189. doi: 10.4172/21577439.1000184.

4. Mikhaylov G., Mikac U., Magaeva A.A., Itin V.I., Naiden E.P., Psakhye I., Bogyo M. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotech-nol. 2011 Aug 7; 6 (9): 594-602. doi: 10.1038/nnano.2011.112.

5. XifrePerezE., Guaita-Esteruelas S., BaranowskaM., MarsalL.F. In Vitro Biocompatibility of Surface-Modified Porous Alumina Particles for HepG2 Tumor Cells: Toward Early Diagnosis and Targeted Treatment. ACS Appl Mater Interfaces. 2015 Aug 26; 7 (33): 18600-8. doi: 10.1021/acsami.5b05016.

6. ShahabadiN., FalsafiM., MansouriK. Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe3O4@SiO2 nanoparticles. Colloids Surf B Biointer-faces. 2016 May 1; 141: 213-22. doi: 10.1016/j.colsurfb.2016.01.054.

7. Cheng Y.J., Luo G.F., Zhu J.Y., Xu X.D., Zeng X., Cheng D.B., Li Y.M., Wu Y., ZhangX.Z., ZhuoR.X., HeF. Enzyme-Induced and Tumor-Targeted Drug Delivery System Based on Multifunctional Mesoporous Silica Nanoparticles. ACS Appl Mater Interfaces. 2015 May 6; 7 (17): 9078-87. doi: 10.1021/acsami.5b00752.

8. Singh S., Shi T., Duffin R., Albrecht C., van Berlo D., Hohr D, Fubini B., Martra G., Fenoglio I., Borm P.J., Schins R.P. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol. 2007 Jul 15; 222 (2): 141-51.

9. XuebinK., YimingH., Dargaville T.R., YiqunF., Zhanfeng C., Huai-yong Z. Modified alumina nanofiber membranes for protein separation. Separation and Purification Technology. 2013; 120: 239-244.

10. Pailleux M., Boudard D., Pourchez J., Forest V., Grosseau P., Cottier M. New insight into artifactual phenomena during in vitro toxicity assessment of engineered nanoparticles: study of TNF-a adsorption on alumina oxide nanoparticle. Toxicol In Vitro. 2013 Apr; 27 (3): 1049-56. doi: 10.1016/j.tiv.2013.01.022.

11. Radziun E., Dudkiewicz W.J., Ksiazek I., NowakK., Anuszewska E.L., Kunicki A., Olszyna A., Zabkowski T. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells. Toxicol In Vitro. 2011 Dec; 25 (8): 1694-700. doi: 10.1016/j.tiv.2011.07.010.

12. Arul Prakash F., Dushendra Babu G.J., Lavanya M., Vidhya K.S., Devasena T. Toxicity Studies of Aluminium Oxide Nanoparticles in Cell Lines. Int J Nanotechnol Applications. 2011; 5: 99-107.

13. Zhang Q.L., Li M.Q., Ji J.W., Gao F.P., Bai R., Chen C.Y., Wang Z.W., Zhang C., Niu Q. In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms. Int J Immunopathol Pharmacol. 2011 Jan-Mar; 24 (1 Suppl): 23S-29S.

14. Wang J., Zhou G., Chen C., Yu H., Wang T., Ma Y., Jia G., Gao Y., Li B., Sun J., Li Y., Jiao F., Zhao Y., Chai Z. Acute toxicity and biodis-tribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett. 2007 Jan 30; 168 (2): 176-85.

15. 15 . Ramani M., Ponnusamya S., Muthamizhchelvan C., Marsili E. Amino acid-mediated synthesis of zinc oxide nanostructures and evaluation of their facet-dependent antimicrobial activity. Colloids Surf B Biointer-faces. 2014 May 1; 117: 233-9. doi: 10.1016/j.colsurfb.2014.02.017.

16. Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles an antimicrobial study. Science and Technology of Advanced Materials. 2008; 9 (3): 035004-035010.

17. Tsukanov A.A., Psakhie S.G. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study. Sci Rep. 2016 Jan 28; 6: 19986. doi: 10.1038/srep19986.

18. Lerner M.I., Glazkova E.A., Lozhkomoev A.S., Svarovskaya N.V., Bakina O.V., Pervikov A.V., Psakhie S.G. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technology. 2016; 295: 307-314.

19. Lozhkomoev A.S., Glazkova E.A., Bakina O.V., Lerner M.I., Gotman I., Gutmanas E.Y., Kazantsev S.O., Psakhie S.G. Synthesis of core-shell AlOOH hollow nanospheres by reacting Al nanoparticles with water. Nanotechnology. 2016 May 20; 27 (20): 205603. doi: 10.1088/09574484/27/20/205603.

20. Lozhkomoev A.S., Glazkova E.A., Svarovskaya N.V., Bakina O.V., Kazantsev S.O., Lerner M.I. Specific features of aluminum nanoparticle water and wet air oxidation. AIP Conference Proceedings. 2015; 1683: 020128.

21. Шиммель Г. Методика электронной микроскопии. М.: Мир. 1972; 300.

22. Хохлов А.Ф., Попов П.В. Физика твердого тела. М.: Высшая школа. 2001; 484.

23. ГОСТ 23401-90. Порошки металлические. Катализаторы и носители. Определение удельной поверхности. М.: Изд-во стандартов; 12.

24. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16; 65 (1-2): 55-63.

25. Zhang S., Li J., Lykotrafitis G., Bao G., Suresh S. Size-Dependent Endocytosis of Nanoparticles. Adv Mater. 2009; 21: 419-424.

26. Alarifi S., Ali D., Alkahtani S. Nanoalumina induces apoptosis by impairing antioxidant enzyme systems in human hepatocarcinoma cells. Int J Nanomedicine. 2015 May 25; 10: 3751-60. doi: 10.2147/IJN.S82050.

27. Pani G., Galeotti T., ChiarugiP. Metastasis: cancer cell's escape from oxidative stress. Cancer Metastasis Rev. 2010 Jun; 29 (2): 351-78. doi: 10.1007/s10555-010-9225-4.


Review

For citations:


Korovin M.S., Bakina O.V., Fomenko A.N., Lerner M.I. ASSESSMENT OF CYTOTOXIC EFFECT OF LOW-DIMENSIONAL ALUMINUM OXIDE STRUCTURES ON TUMOR CELLS. Siberian journal of oncology. 2016;15(6):35-41. (In Russ.) https://doi.org/10.21294/1814-4861-2016-15-6-35-41

Views: 965


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)