Preview

Сибирский онкологический журнал

Расширенный поиск

ВОСПАЛЕНИЕ КАК ТЕРАПЕВТИЧЕСКАЯ МИШЕНЬ ПРИ КОМПЛЕКСНОМ ЛЕЧЕНИИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ

https://doi.org/10.21294/1814-4861-2017-16-3-65-78

Аннотация

В обзоре анализируется роль воспаления в канцерогенезе, развитии опухоли и метастазировании. Обобщены многочисленные данные об эффективности противовоспалительных препаратов с целью профилактики и вспомогательной терапии опухолевой болезни. Обсуждены механизмы действия и причины противоречивости результатов использования нестероидных противовоспалительных препаратов (НПВП). Разнонаправленность эффектов может быть обусловлена особенностями иммуновоспалительных реакций, реализующихся в процессе канцерогенеза и развития опухолей, которые еще предстоит изучить. Обращается внимание на избирательность эффектов НПВП в отношении разных нозологических форм опухолей и противоположный характер противоопухолевых эффектов препаратов, относящихся по механизму действия к одной группе. Сделано заключение, что неудачи применения НПВП с профилактической и лечебной целью чаще возникают при карциномах, происходящих из плоского эпителия. Анализ литературы позволяет прийти к заключению, что имеются неоспоримые данные, позволяющие включать противовоспалительные препараты в существующие схемы противоопухолевого лечения при некоторых нозологических формах с определением молекулярных предикторов эффекта. Противовоспалительная терапия позволит устранить факторы, способствующие приобретению опухолевыми клетками инвазивных и метастатических свойств и формированию опухолевых и преметастатических ниш, а значит, развитию метастазов и рецидивов опухоли. Особенно перспективны при солидных опухолях определенные неселективные (аспирин) и селективные (целекоксиб) НПВП. 

Об авторах

О. Е. Савельева
Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук, г. Томск
Россия

доктор медицинских наук, старший научный сотрудник отделения патологической анатомии и цитологии

634009, г. Томск, пер. Кооперативный, 5

SPIN-код: 9633-9449



В. М. Перельмутер
Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук, г. Томск
Россия

доктор медицинских наук, профессор, заведующий отделением патологической анатомии и цитологии

634009, г. Томск, пер. Кооперативный, 5

SPIN-код: 6252-5319



Л. А. Таширева
Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук, г. Томск
Россия

кандидат медицинских наук, научный сотрудник отделения патологической анатомии и цитологии

634009, г. Томск, пер. Кооперативный, 5

SPIN-код: 4371-5340

 



Е. В. Денисов
Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук, г. Томск
Россия

кандидат биологических наук, старший научный сотрудник лаборатории молекулярной онкологии и иммунологии

634009, г. Томск, пер. Кооперативный, 5

SPIN-код: 9498-5797



А. В. Исаева
Научно-исследовательский институт онкологии, Томский национальный исследовательский медицинский центр Российской академии наук, г. Томск
Россия

врач отделения патологической анатомии и цитологии

634009, г. Томск, пер. Кооперативный, 5

SPIN-код: 2058-7166



Список литературы

1. Mantovani A., Allavena P., Sica A., Balkwill F. Cancer-related inflammation. Nature. 2008 Jul 24; 454 (7203): 436–44. doi: 10.1038/ nature07205.

2. Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002 Dec 19-26; 420 (6917): 860–7. doi: 10.1038/nature01322.

3. Trinchieri G. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Annu Rev Immunol. 2012; 30: 677–706. doi: 10.1146/annurev-immunol-020711-075008.

4. Retsky M., Demicheli R., Hrushesky W.J., Forget P., De Kock M., Gukas I., Rogers R.A., Baum M., Sukhatme V., Vaidya J.S. Reduction of Breast Cancer Relapses with Perioperative Non-Steroidal Anti-Inflammatory Drugs: New Findings and a Review. Curr Med Chem. 2013; 20 (33): 4163–76. doi: 10.2174/09298673113209990250.

5. Mantovani A. Cancer: inflaming metastasis. Nature. 2009 Jan 1; 457 (7225): 36–7. doi: 10.1038/457036b.

6. Nguyen D.X., Bos P.D., Massague J. Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer. 2009 Apr; 9 (4): 274–84. doi: 10.1038/nrc2622.

7. Polyak K., Weinberg R.A. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009 Apr; 9 (4): 265–73. doi: 10.1038/nrc2620.

8. Kaplan R.N., Riba R.D., Zacharoulis S., Bramley A.H., Vincent L., Costa C., MacDonald D.D., Jin D.K., Shido K., Kerns S.A., Zhu Z., Hicklin D., Wu Y., Port J.L., Altorki N., Port E.R., Ruggero D., Shmelkov S.V., Jensen K.K., Rafii S., Lyden D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the premetastatic niche. Nature. 2005 Dec 8; 438 (7069): 820–7. doi: 10.1038/nature04186.

9. Perelmuter V.M., Manskikh V.N. The Concept of a Preniche for Localization of Future Metastases. Tumors of the Central Nervous System Types of Tumors, Diagnosis, Ultrasonography, Surgery, Brain Metastasis, and General CNS Diseases. Ed. Hayat MA. Berlin: Springer. 2014; 13: 93–106.

10. Barcellos-Hoff M.H., Lyden D., Wang T.C. The evolution of the cancer niche during multistage carcinogenesis. Nat Rev Cancer. 2013 Jul; 13 (7): 511–8. doi: 10.1038/nrc3536.

11. Mantovani A., Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010 Apr; 22 (2): 231–7. doi: 10.1016/j.coi.2010.01.009.

12. Perelmuter V.M., Manskikh V.N. Preniche as missing link of the metastatic niche concept explaining organ-preferential metastasis of malignant tumors and the type of metastatic disease. Biochemistry (Mosc). 2012 Jan; 77 (1): 111–8. doi: 10.1134/S0006297912010142.

13. Lin K.T., Wang L.H. New dimension of glucocorticoids in cancer treatment. Steroids. 2016 Jul; 111: 84–8. doi: 10.1016/j. steroids.2016.02.019.

14. Coutinho A.E., Chapman K.E. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol. 2011 Mar 15; 335 (1): 2–13. doi: 10.1016/j.mce.2010.04.005.

15. Singh P.P., Lemanu D.P., Taylor M.H., Hill A.G. Association between preoperative glucocorticoids and long-term survival and cancer recurrence after colectomy: follow-up analysis of a previous randomized controlled trial. Br J Anaesth. 2014 Jul; 113 Suppl 1: i68 73. doi: 10.1093/bja/aet577.

16. Yu H.C., Luo Y.X., Peng H., Kang L., Huang M.J., Wang J.P. Avoiding perioperative dexamethasone may improve the outcome of patients with rectal cancer. Eur J Surg Oncol. 2015 May; 41 (5): 667–73. doi: 10.1016/j.ejso.2015.01.034.

17. Rutz H.P. Effects of corticosteroid use on treatment of solid tumours. Lancet. 2002 Dec 14; 360 (9349): 1969–70. doi: 10.1016/S0140- 6736(02)11922-2.

18. Khan Z., Khan N., Tiwari R.P., Sah N.K., Prasad G.B., Bisen P.S. Biology of Cox-2: an application in cancer therapeutics. Curr Drug Targets. 2011 Jun; 12 (7): 1082–93.

19. Giovannucci E., Rimm E.B., Stampfer M.J., Colditz G.A., Ascherio A., Willett W.C. Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann Intern Med. 1994 Aug 15; 121 (4): 241–6. doi: 10.7326/0003-4819-121-4-199408150-00001.

20. Giovannucci E., Egan K.M., Hunter D.J., Stampfer M.J., Colditz G.A., Willett W.C., Speizer F.E. Aspirin and the risk of colorectal cancer in women. N Engl J Med. 1995 Sep 7; 333 (10): 609–14. doi: 10.1056/ NEJM199509073331001.

21. Harris R.E. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology. 2009 Apr; 17 (2): 55–67. doi: 10.1007/s10787-009-8049-8.

22. Daugherty S.E., Pfeiffer R.M., Sigurdson A.J., Hayes R.B., Leitzmann M., Schatzkin A., Hollenbeck A.R., Silverman D.T. Nonsteroidal Antiinflammatory Drugs and Bladder Cancer: A Pooled Analysis. Am J Epidemiol. 2011 Apr 1; 173 (7): 721–30. doi: 10.1093/aje/kwq437.

23. Zhang D., Bai B., Xi Y., Wang T., Zhao Y. Is aspirin use associated with a decreased risk of ovarian cancer? A systematic review and metaanalysis of observational studies with dose-response analysis. Gynecol Oncol. 2016 Aug; 142 (2): 368–77. doi: 10.1016/j.ygyno.2016.04.543.

24. Zhang B., Liang X., Ye L., Wang Y. No Chemopreventive Effect of Nonsteroidal Anti-Inflammatory Drugs on Nonmelanoma Skin Cancer: Evidence from Meta-Analysis. PLoS One. 2014 May 14; 9 (5): e96887. doi: 10.1371/journal.pone.0096887.

25. Rothwell P.M., Fowkes F.G., Belch J.F., Ogawa H., Warlow C.P., Meade T.W. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011 Jan 1; 377 (9759): 31–41. doi: 10.1016/S0140-6736(10)62110-1.

26. Schernhammer E.S., Kang J.H., Chan A.T., Michaud D.S., Skinner H.G., Giovannucci E., Colditz G.A., Fuchs C.S. A prospective study of aspirin use and the risk of pancreatic cancer in women. J Natl Cancer Inst. 2004 Jan 7; 96 (1): 22–8. doi: 10.1093/jnci/djh001.

27. Larsson S.C., Giovannucci E., Bergkvist L., Wolk A. Aspirin and Nonsteroidal Anti-inflammatory Drug Use and Risk of Pancreatic Cancer: A Meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006 Dec; 15 (12): 2561–4. doi: 10.1158/1055-9965.EPI-06-0574.

28. Cao Y., Nishihara R., Wu K., Wang M., Ogino S., Willett W.C., Spiegelman D., Fuchs C.S., Giovannucci E.L., Chan A.T. Population-wide Impact of Long-term Use of Aspirin and the Risk for Cancer. JAMA Oncol. 2016 Jun 1; 2 (6): 762–9. doi: 10.1001/jamaoncol.2015.6396.

29. Eibl G., Takata Y., Boros L.G., Liu J., Okada Y., Reber H.A., Hines O.J. Growth stimulation of COX-2-negative pancreatic cancer by a selective COX-2 inhibitor. Cancer Res. 2005 Feb 1; 65 (3): 982–90.

30. Bastiaannet E., Sampieri K., Dekkers O.M., de Craen A.J., van Herk-Sukel M.P., Lemmens V., van den Broek C.B., Coebergh J.W., Herings R.M., van de Velde C.J., Fodde R., Liefers G.J. Use of Aspirin postdiagnosis improves survival for colon cancer patients. Br J Cancer. 2012 Apr 24; 106 (9): 1564–70. doi: 10.1038/bjc.2012.101.

31. Walker A.J., Grainge M.J., Card T.R. Aspirin and other nonsteroidal anti-inflammatory drug use and colorectal cancer survival: a cohort study. Br J Cancer. 2012 Oct 23; 107 (9): 1602–7. doi: 10.1038/ bjc.2012.427.

32. Fraser D.M., Sullivan F.M., Thompson A.M., McCowan C. Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study. Br J Cancer. 2014 Jul 29; 111 (3): 623–7. doi: 10.1038/ bjc.2014.264.

33. Ogawa F., Amano H., Ito Y., Matsui Y., Hosono K., Kitasato H., Satoh Y., Majima M. Aspirin reduces lung cancer metastasis to regional lymph nodes. Biomed Pharmacother. 2014 Feb; 68 (1): 79–86. doi: 10.1016/j. biopha.2013.11.006.

34. Zhang G., Panigrahy D., Hwang S.H., Yang J., Mahakian L.M., Wettersten H.I., Liu J.Y., Wang Y., Ingham E.S., Tam S., Kieran M.W., Weiss R.H., Ferrara K.W., Hammock B.D. Dual inhibition of cyclooxygenase-2 and soluble epoxide hydrolase synergistically suppresses primary tumor growth and metastasis. Proc Natl Acad Sci USA. 2014 Jul 29; 111 (30): 11127–32. doi: 10.1073/pnas.1410432111.

35. Forget P., De Kock M. Perspectives in anaesthesia for cancer surgery. J Cancer Res Clin Oncol. 2014 Mar; 140 (3): 353–9. doi: 10.1007/ s00432-013-1522-1.

36. Demaria S., Pikarsky E., Karin M., Coussens L.M., Chen Y.C., El-Omar E.M., Trinchieri G., Dubinett S.M., Mao J.T., Szabo E., Krieg A., Weiner G.J., Fox B.A., Coukos G., Wang E., Abraham R.T., Carbone M., Lotze M.T. Cancer and inflammation: promise for biologic therapy. J Immunother. 2010 May; 33 (4): 335–51. doi: 10.1097/ CJI.0b013e3181d32e74.

37. Wrona D. Neural-immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J Neuroimmunol. 2006 Mar; 172 (1–2): 38–58. doi: 10.1016/j. jneuroim.2005.10.017.

38. Bartal I., Melamed R., Greenfeld K., Atzil S., Glasner A., Domankevich V., Naor R., Beilin B., Yardeni I.Z., Ben-Eliyahu S. Immune perturbations in patients along the perioperative period: alterations in cell surface markers and leukocyte subtypes before and after surgery. Brain Behav Immun. 2010 Mar; 24 (3): 376–86. doi: 10.1016/j.bbi.2009.02.010.

39. Forget P., Vandenhende J., Berliere M., Machiels J.P., Nussbaum B., Legrand C., De Kock M. Do Intraoperative Analgesics Influence Breast Cancer Recurrence After Mastectomy? A Retrospective Analysis. Anesth Analg. 2010 Jun 1; 110 (6): 1630–5. doi: 10.1213/ ANE.0b013e3181d2ad07.

40. Slattery M.L., Herrick J.S., Bondurant K.L., Wolff R.K. Toll-like receptor genes and their association with colon and rectal cancer development and prognosis. Int J Cancer. 2012 Jun 15; 130 (12): 2974–80. doi: 10.1002/ijc.26314.

41. Chan A.T., Ogino S., Fuchs C.S. Aspirin Use and Survival After Diagnosis of Colorectal Cancer. JAMA. 2009 Aug 12; 302 (6): 649–58. doi: 10.1001/jama.2009.1112.

42. Liao X., Morikawa T., Lochhead P., Imamura Y., Kuchiba A., Yamauchi M., Nosho K., Qian Z.R., Nishihara R., Meyerhardt J.A., Fuchs C.S., Ogino S. Prognostic Role of PIK3CA Mutation in Colorectal Cancer: Cohort Study and Literature Review. Clin Cancer Res. 2012 Apr 15; 18 (8): 2257–68. doi: 10.1158/1078-0432.CCR-11-2410.

43. Domingo E., Church D.N., Sieber O., Ramamoorthy R., Yanagisawa Y., Johnstone E., Davidson B., Kerr D.J., Tomlinson I.P., Midgley R. Evaluation of PIK3CA Mutation As a Predictor of Benefit From Nonsteroidal Anti-Inflammatory Drug Therapy in Colorectal Cancer. J Clin Oncol. 2013 Dec 1; 31 (34): 4297–305. doi: 10.1200/JCO.2013.50.0322.

44. Steinbach G., Lynch P.M., Phillips R.K., Wallace M.H., Hawk E., Gordon G.B., Wakabayashi N., Saunders B., Shen Y., Fujimura T., Su L.K., Levin B., Godio L., Patterson S., Rodriguez-Bigas M.A., Jester S.L., King K.L., Schumacher M., Abbruzzese J., DuBois R.N., Hittelman W.N., Zimmerman S., Sherman J.W., Kelloff G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000 Jun 29; 342 (26): 1946–52. doi: 10.1056/NEJM200006293422603.

45. Baron J.A., Sandler R.S., Bresalier R.S., Lanas A., Morton D.G., Riddell R., Iverson E.R., Demets D.L. Cardiovascular events associated with rofecoxib: final analysis of the APPROVe trial. Lancet. 2008 Nov 15; 372 (9651): 1756–64. doi: 10.1016/S0140-6736(08)61490-7.

46. Arber N., Lieberman D., Wang T.C., Zhang R., Sands G.H., Bertagnolli M.M., Hawk E.T., Eagle C., Coindreau J., Zauber A., Lanas A., Levin B. The APC and PreSAP Trials: A Post Hoc Noninferiority Analysis Using a Comprehensive New Measure for Gastrointestinal Tract Injury in 2 Randomized, Double-Blind Studies Comparing Celecoxib and Placebo. Clin Ther. 2012 Mar; 34 (3): 569–79. doi: 10.1016/j.clinthera.2012.02.001.

47. Xu H.B., Shen F.M., Lv Q.Z. Celecoxib enhanced the cytotoxic effect of cisplatin in chemo-resistant gastric cancer xenograft mouse models through a cyclooxygenase-2-dependent manner. Eur J Pharmacol. 2016 Apr 5; 776: 1–8. doi: 10.1016/j.ejphar.2016.02.035.

48. Nugent F.W., Mertens W.C., Graziano S., Levitan N., Collea R., Gajra A., Marshall J., McCann J. Docetaxel and cyclooxygenase-2 inhibition with celecoxib for advanced non-small cell lung cancer progressing after platinum-based chemotherapy: a multicenter phase II trial. Lung Cancer. 2005 May; 48 (2): 267–73. doi: 10.1016/j.lungcan. 2004.11.004.

49. Pruthi R.S., Derksen J.E., Moore D., Carson C.C., Grigson G., Watkins C., Wallen E. Phase II trial of celecoxib in prostate-specific antigen recurrent prostate cancer after definitive radiation therapy or radical prostatectomy. Clin Cancer Res. 2006 Apr 1; 12 (7 Pt 1): 2172–7. doi: 10.1158/1078-0432.CCR-05-2067.

50. Fox A., Medhurst S., Courade J.P., Glatt M., Dawson J., Urban L., Bevan S., Gonzalez I. Anti-hyperalgesic activity of the cox-2 inhibitor lumiracoxib in a model of bone cancer pain in the rat. Pain. 2004 Jan; 107 (1–2): 33–40. doi: 10.1016/j.pain.2003.09.003.

51. Lai V., George J., Richey L., Kim H.J., Cannon T., Shores C., Couch M. Results of a pilot study of the effects of celecoxib on cancer cachexia in patients with cancer of the head, neck, and gastrointestinal tract. Head Neck. 2008 Jan; 30 (1): 67–74. doi: 10.1002/hed.20662.

52. Gately S., Li W.W. Multiple Roles of COX-2 in Tumor Angiogenesis: A Target for Antiangiogenic Therapy. Semin Oncol. 2004 Apr; 31 (2 Suppl 7): 2–11. doi:10.1016/j.semincol.2004.03.040.

53. Singh B., Lucci A. Role of cyclooxygenase-2 in breast cancer. J Surg Res. 2002 Nov; 108 (1): 173–9.

54. Seno H., Oshima M., Ishikawa T.O., Oshima H., Takaku K., Chiba T., Narumiya S., Taketo M.M. Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res. 2002 Jan 15; 62 (2): 506–11.

55. Williams C.S., Tsujii M., Reese J., Dey S.K., DuBois R.N. Host cyclooxygenase- 2 modulates carcinoma growth. J Clin Invest. 2000 Jun; 105 (11): 1589–94. doi: 10.1172/JCI9621.

56. Yuan A., Yu C.J., Shun C.T., Luh K.T., Kuo S.H., Lee Y.C., Yang P.C. Total cyclooxygenase-2 mRNA levels correlate with vascular endothelial growth factor mRNA levels, tumor angiogenesis and prognosis in nonsmall cell lung cancer patients. Int J Cancer. 2005 Jul 1; 115 (4): 545–55. doi: 10.1002/ijc.20898.

57. Reddy B.S., Rao C.V., Seibert K. Evaluation of cyclooxygenase-2 inhibitor for potential chemopreventive properties in colon carcinogenesis. Cancer Res. 1996 Oct 15; 56 (20): 4566–9.

58. Mutoh M., Takahashi M., Wakabayashi K. Roles of Prostanoids in Colon Carcinogenesis and their Potential Targeting for Cancer Chemoprevention. Curr Pharm Des. 2006; 12 (19): 2375–82. doi: 10.2174/138161206777698972.

59. Allavena P., Sica A., Garlanda C., Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008 Apr; 222: 155–61. doi: 10.1111/j.1600- 065X.2008.00607.x.

60. Garlanda C., Dinarello C.A., Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013 Dec 12; 39 (6): 1003–18. doi: 10.1016/j.immuni.2013.11.010.

61. Motz G.T., Santoro S.P., Wang L.P., Garrabrant T., Lastra R.R., Hagemann I.S., Lal P., Feldman M.D., Benencia F., Coukos G. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 2014 Jun; 20 (6): 607–15. doi: 10.1038/nm.3541.

62. Dormond O., Foletti A., Paroz C., Rüegg C. NSAIDs inhibit alpha V beta 3 integrin-mediated and Cdc42/Rac-dependent endothelial-cell spreading, migration and angiogenesis. Nat Med. 2001 Sep; 7 (9): 1041–7. doi: 10.1038/nm0901-1041.

63. Rodrigues S., Van Aken E., Van Bocxlaer S., Attoub S., Nguyen Q.D., Bruyneel E., Westley B.R., May F.E., Thim L., Mareel M., Gespach C., Emami S. Trefoil peptides as proangiogenic factors in vivo and in vitro: Implication of cyclooxygenase-2 and EGF receptor signaling. FASEB J. 2003 Jan; 17 (1): 7–16. doi: 10.1096/fj.02-0201com.

64. Hedi H., Norbert G. 5-Lipoxygenase Pathway, Dendritic Cells, and Adaptive Immunity. J. Biomed. Biotechnol. J Biomed Biotechnol. 2004; 2004 (2): 99–105. doi: 10.1155/S1110724304310041.

65. Langley R.E., Rothwell P.M. Potential biomarker for aspirin use in colorectal cancer therapy. Nat Rev Clin Oncol. 2013 Jan; 10 (1): 8–10. doi: 10.1038/nrclinonc.2012.216.

66. Zhang H., Tian M., Xiu C., Wang Y., Tang G. Enhancement of antitumor activity by combination of tumor lysate-pulsed dendritic cells and celecoxib in a rat glioma model. Oncol Res. 2013; 20 (10): 447–55. doi: 10.3727/096504013X13685487925176.

67. Sceneay J., Smyth M.J., Möller A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev. 2013 Dec; 32 (3–4): 449–64. doi: 10.1007/s10555-013-9420-1.

68. Schönthal A.H. Exploiting cyclooxygenase-(in)dependent properties of COX-2 inhibitors for malignant glioma therapy. Anticancer Agents Med Chem. 2010 Jul; 10 (6): 450–61. doi: 10.2174/1871520611009060450.

69. Shiang J.C., Jan R.L., Tsai M.K., Hsieh C.C., Kuo H.F., Kuo C.H., Yang S.N., Huang M.Y., Chen L.C., Hung C.H. Dipyrone & 2,5-dimethylcelecoxib suppress Th2-related chemokine production in monocyte. Indian J Med Res. 2014 Jul; 140 (1): 109–15.

70. Herrmann C., Block C., Geisen C., Haas K., Weber C., Winde G., Möröy T., Müller O. Sulindac sulfide inhibits Ras signaling. Oncogene. 1998 Oct 8; 17 (14): 1769–76. doi: 10.1038/sj.onc.1202085.

71. Lönnroth C., Andersson M., Asting A.G., Nordgren S., Lundholm K. Preoperative low dose NSAID treatment influences the genes for stemness, growth, invasion and metastasis in colorectal cancer. Int J Oncol. 2014 Dec; 45 (6): 2208–20. doi: 10.3892/ijo.2014.2686.

72. Samal S.K., Routray S., Veeramachaneni G.K., Dash R., Botlagunta M. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci Rep. 2015 Apr 28; 5: 9982. doi: 10.1038/srep09982.

73. Botlagunta M., Vesuna F., Mironchik Y., Raman A., Lisok A., Winnard P.Jr., Mukadam S., Van Diest P., Chen J.H., Farabaugh P., Patel A.H., Raman V. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene. 2008 Jun 26; 27 (28): 3912–22. doi: 10.1038/onc.2008.33.

74. Arnold K.M., Opdenaker L.M., Flynn D., Sims-Mourtada J. Wound Healing and Cancer Stem Cells: Inflammation as a Driver of Treatment Resistance in Breast Cancer. Cancer Growth Metastasis. 2015 Jan 29; 8: 1–13. doi: 10.4137/CGM.S11286.

75. Fridman W.H., Pagès F., Sautès-Fridman C., Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012 Mar 15; 12 (4): 298–306. doi: 10.1038/nrc3245.

76. Cui Y.L., Li H.K., Zhou H.Y., Zhang T., Li Q. Correlations of tumor-associated macrophage subtypes with liver metastases of colorectal cancer. Asian Pac J Cancer Prev. 2013; 14 (2): 1003–7. doi: 10.7314/ APJCP.2013.14.2.1003.

77. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989 Aug; 8 (2): 98–101.

78. Yamamura K., Sugimoto H., Kanda M., Yamada S., Nomoto S., Nakayama G., Fujii T., Koike M., Fujiwara M., Kodera Y. Comparison of inflammation-based prognostic scores as predictors of tumor recurrence in patients with hepatocellular carcinoma after curative resection. J Hepatobiliary Pancreat Sci. 2014 Sep; 21 (9): 682–8. doi: 10.1002/jhbp.114.

79. Kos M., Hocazade C., Kos F.T., Uncu D., Karakas E., Dogan M., Uncu H.G., Yildirim N., Zengin N. Prognostic role of pretreatment platelet/ lymphocyte ratio in patients with non-small cell lung cancer. Wien Klin Wochenschr. 2016 Sep; 128 (17–18): 635–40. doi: 10.1007/s00508-015- -0724-8.

80. Feng J.F., Huang Y., Chen Q.X. A new inflammation index is useful for patients with esophageal squamous cell carcinoma. Onco Targets Ther. 2014 Sep 30; 7: 1811–5. doi: 10.2147/OTT.S68084.

81. Franklin B.S., Bossaller L., De Nardo D., Ratter J.M., Stutz A., Engels G., Brenker C., Nordhoff M., Mirandola S.R., Al-Amoudi A., Mangan M.S., Zimmer S., Monks B.G., Fricke M., Schmidt R.E., Espevik T., Jones B., Jarnicki A.G., Hansbro P.M., Busto P., Marshak-Rothstein A., Hornemann S., Aguzzi A., Kastenmüller W., Latz E. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014 Aug; 15 (8): 727–37. doi: 10.1038/ni.2913.


Рецензия

Для цитирования:


Савельева О.Е., Перельмутер В.М., Таширева Л.А., Денисов Е.В., Исаева А.В. ВОСПАЛЕНИЕ КАК ТЕРАПЕВТИЧЕСКАЯ МИШЕНЬ ПРИ КОМПЛЕКСНОМ ЛЕЧЕНИИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ. Сибирский онкологический журнал. 2017;16(3):65-78. https://doi.org/10.21294/1814-4861-2017-16-3-65-78

For citation:


Savelieva O.E., Perelmuter V.M., Tashireva L.A., Denisov E.V., Isaeva A.V. INFLAMMATION AS A THERAPEUTIC TARGET IN THE COMPLEX TREATMENT OF MALIGNANT TUMORS. Siberian journal of oncology. 2017;16(3):65-78. (In Russ.) https://doi.org/10.21294/1814-4861-2017-16-3-65-78

Просмотров: 1552


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)