Preview

Siberian journal of oncology

Advanced search

USE OF PYRIDOXINE TO INCREASE ANTICACNER ACTIVITY OF METHIONINE-GAMMA-LYASE IN MURINE CANCER MODELS

https://doi.org/10.21294/1814-4861-2017-16-5-27-35

Abstract

We presented results of monotherapy and combination therapy of transplantable murine tumor models using methionine-gamma-lyase (MGL) and pyridoxine hydrochloride. We studied MGL from Clostridium sporogenes and Citrobacter freundii. We used Lewis lung carcinoma (LLC), melanoma B16, leukemias P388 and L1210 and Fisher lymphadenosis L5178y. Neither monotherapy with MGL nor combination of MGL and pyridoxine demonstrated antitumor activity against P388 and L5178y. In the murine L1210 leukemia model, MGL C. sporogenes injected intraperitoneally in the dose of 2000 U/kg, 11 times with a 12-hour interval increased the life span of mice (ILS=22 %, р=0.035). In the LLC model, the combination of MGL C. sporogenes at a dose of 400 U/kg, i.p., 4 times with a 48-hour interval and pyridoxine at a dose of 250 mg/kg led to tumor growth inhibition (TGI=55 %, р<0.001) on the first day after the completion of treatment. Monotherapy with MGL or pyridoxine in the same regimens resulted in a 24 % TGI (р=0.263) or 21 % TGI (р=0.410), respectively. In a pair-wise comparison of treatments, MGL + pyridoxine was more effective compared to MGL used alone (р=0.061) and MGL + pyridoxine was more effective then pyridoxine alone (р=0.031). MGL from C. freundii at a dose of 200 U/kg, 4 times with a 48-hour interval plus pyridoxine at a dose of 500 mg/kg injected on day 9 after the completion of treatment led to 50 % TGI, whereas MGL monotherapy at a single dose of 400 U/kg or pyridoxine monotherapy in the same regimen showed 5 % TGI (р=0.991) and 4 % TGI (р=0.998), respectively. The pair-wise comparison showed that MGL (200 U/kg) + pyridoxine was more effective than MGL (400 U/ kg) alone (р<0.001) and pyridoxine alone (р=0.003). In the B16 model, the combination of MGL injected i.p at a dose of 2000 U/kg and pyridoxine at a dose of 300 mg/kg showed 56 % TGI on day 1after the completion of treatment (р=0.045) and 35 % TGI on day 3 (р=0.038). Pyridoxine significantly increased the anticancer effect of MGL: MGL 1000 U/kg i.p and MGL 1000 U/kg i.p. + pyridoxine 300 mg/kg led to TGI=45 % (р=0.034) on day 3 after the completion of treatment. Single maximum tolerated dose after multiple i.p. administration was defined as 2000 U/kg, simultaneous administration of pyridoxine did not increase the toxicity of MGL. In conclusion, LLC and B16 are sensitive to MGL treatment, and pyridoxine may increase the efficacy of MGL.

About the Authors

D. Zh. Davydov
N.N. Blokhin Russian Cancer Research Center
Russian Federation
23, Kashirskoe shosse, 115478-Moscow


Е. А. Morozova
V.A. Engelgardt Institute of Molecular Biology
Russian Federation
32,Vavilova Street, 119991-Moscow


М. V. Komarova
Samara State Medical University
Russian Federation
89, Chapaevskaya Street, 443099-Samara


N. V. Anufrieva
V.A. Engelgardt Institute of Molecular Biology
Russian Federation
32,Vavilova Street, 119991-Moscow


G. B. Zavilgelsky
State Research Institute of Genetics
Russian Federation
1, Fist Dorozhny proezd, 117545-Moscow


I. V. Manukhov
State Research Institute of Genetics; Laboratory of Molecular Genetics, Dolgoprudny, Moscow region
Russian Federation

1, Fist Dorozhny proezd, 117545-Moscow, Russia

9, Institutsky per., 141700-Dolgoprudny, Moscow region



T. V. Demidkina
V.A. Engelgardt Institute of Molecular Biology
Russian Federation
32,Vavilova Street, 119991-Moscow


Е. М. Treshchalina
N.N. Blokhin Russian Cancer Research Center
Russian Federation
23, Kashirskoe shosse, 115478-Moscow


V. S. Pokrovsky
N.N. Blokhin Russian Cancer Research Center
Russian Federation
23, Kashirskoe shosse, 115478-Moscow


References

1. Thomas D., Surdin-Kerjan Y. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 1997 Dec; 61 (4): 503–32.

2. Ravanel S., Gakière B., Job D., Douce R. The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA. 1998 Jun 23; 95 (13): 7805–12.

3. Sekowska A., Kung H., Danchin A. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction. J Mol Microbiol Biotechnol. 2000 Apr; 2 (2): 145–77.

4. Sugimura T., Birnbaum S.M., Winitz M., Greenstein J.P. Quantitative nutritional studies with water-soluble, chemically defined diets. VII. The forced feeding of diets eaсh lacking in one essential amino acid. Arch Biochem Bioophys. 1959; 81 (2): 448–455.

5. Guo H.Y., Herrera H., Groce A., Hoffman R.M. Expression of the biochemical defect of methionine dependence in fresh patient tumors in primary histoculture. Cancer Res. 1993; 53 (11): 2479–83.

6. Kim D.H., Muto M., Kuwahara Y., Nakanishi Y., Watanabe H., Aoyagi K., Sasaki H. Array-based comparative genomic hybridization of circulating esophageal tumor cells. Oncol Rep. 2006; 16 (5): 1053–1059.

7. Käck H., Sandmark J., Gibson K., Schneider G., Lindqvist Y. Crystal structure of diaminopelargonic acid synthase: evolutionary relationships between pyridoxal-5’-phosphate-dependent enzymes. J Mol Biol. 1999; 291: 857–876.

8. Tanaka H., Esaki N., Soda K. Versatile bacterial enzyme: L-methionine γ-Lyase. Enzyme Microb Technol. 1985; 7: 530–537.

9. Cellarier E., Durando X., Vasson M.P., Farges M.C., Demiden A., Maurizis J.C., Madelmont J.C., Chollet P. Methionine dependence and cancer treatment. Cancer Treatment Reviews. 2003; 29 (6): 489–499.

10. Morozova E.A., Kulikova V.V., Yashin D.V., Anufrieva N.V., Anisimova N.Y., Revtovich S.V., Demidkina T.V. Kinetic Parameters and Cytotoxic Activity of Recombinant Methionine γ-Lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii. Acta Naturae. 2013; 5 (3): 92–8.

11. Morozova E.A., Anufrieva N.V., Davydov D.Z., Komarova M.V., Dyakov I.N., Rodionov A.N., Pokrovsky V.S. Plasma methionine depletion and pharmacokinetic properties in mice of methionine γ-lyase from Citrobacter freundii, Clostridium tetani and Clostridium sporogenes. Biomed Pharmacother. 2017; 5 (88): 978–984. doi: 10.1016/j. biopha.2017.01.127.

12. Pokrovsky V.S, Lesnaya N.A., Treshchalina Е.М., Lukasheva Е.V., Berezov Т.Т. Prospects for developing new enzyme antitumor drugs. Problems in Oncology. 2011; 57 (2): 155–164. [in Russian]

13. Pokrovsky V.S, Treshchalina Е.М. Enzyme drugs in hematological oncology: current trends of experimental research and prospects of clinical application. Clinical Hematological Oncology. Basic Research and Clinical Practice. 2014: 7 (1): 28–38. [in Russian]

14. Egler R.A., Ahuja S.P., Matloub Y. L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J Pharmacol Pharmacother. 2016; 7 (2): 62–71.

15. Pokrovskaya M.V., Aleksandrova S.S., Pokrovsky V.S., Veselovsky A.V., Grishin D.V., Abakumova O.Y., Sokolov N.N. Identification of functional regions in the Rhodospirillum rubrum L-asparaginase by site-directed mutagenesis. Mol Biotechnol. 2015; 57 (3): 251–264. doi: 10.1007/s12033-014-9819-0.

16. Demidkina Т.V. Tyrosine-phenol-lyase: structure and functions. [Abstract of doctoral thesis]. [Moscow]; 1998. 203. [in Russian]

17. Sun X., Yang Z., Li S. In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5’-phosphate supplementation. Cancer Res. 2003; 63 (23): 8377–8383.

18. Yang Z., Sun X., Li S. Circulating half-life of PEGylated recombinant methioninase holoenzyme is highly dose dependent on cofactor pyridoxal-5’-phosphate. Cancer Res. 2004; 64 (16): 5775–5778.

19. Kokkinakis D.M., Schold S.C. Jr., Hori Н., Nobori Т. Effect of long-term depletion of plasma methionine on the growth and survival of human brain tumor xenografts in athymic mice. Nutr. Cancer. 1997; 29 (3): 195–204.

20. Yang Z., Wang J., Lu Q., Xu J., Kobayashi Y., Takakura T., Takimoto A., Yoshioka T., Lian C., Chen C., Zhang D., Zhang Y., Li S., Sun X., Tan Y., Yagi S., Frenkel E.P., Hoffman R.M. PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res. 2004; 64: 6673–6678.

21. Furth-Walker D., Leibman D., Smolen A. Changes in pyridoxal phosphate and pyridoxamine phosphate in blood, liver and brain in the pregnant mouse. J Nutr. 1989; 119 (5): 750–756.

22. Colombini C.E., McCoy E.E. Vitamin B6 metabolism. The utilization of [14C] pyridoxine by the normal mouse. 1970; 9 (3): 533–538.

23. Kreis W., Hession C. Isolation and purification of L-methioninealpha-deamino-gamma-mercaptomethane-lyase (L-methioninase) from Clostridium sporogenes. Cancer Res. 1973 Aug; 33 (8): 1862–5.

24. Hori H., Takabayashi K., Orvis L., Carson D.A., Nobori T. Gene cloning and characterization of Pseudomonas putida L-methioninealpha-deamino-gamma-mercaptomethane-lyase. Cancer Res.1996; 56 (9): 2116–2122.

25. El-Sayed A.S., Shouman S.A., Nassrat H.M. Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes L-methioninase. Enzyme Microb Technol. 2012; 51 (4): 200–210. doi: 10.1016/j.enzmictec.2012.06.004.

26. Huang K.Y., Hu H.Y., Tang Y.L., Xia F.G., Luo X.Q., Liu J.Z. Highlevel expression, purification and large-scale production of L-methionine γ-Lyase from Ideomarina as a novel anti-leucemic. Mar Drags. 2015; 13: 5492–5507. doi: 10.3390/md13085492.

27. Machover D., Zittoun J., Broët P., Metzger G., Orrico M., Goldschmidt E., Luccioni C. Cytotoxic synergism of methioninase in combination with 5-fluorouracil and folinic acid. Biochem Pharmacol. 2001; 61 (7): 867–876.

28. Hu J., Cheung N.K. Methionine depletion with recombinant methioninase: In vitro and in vivo efficacy against neuroblastoma and its synergism with chemotherapeutic drug. Int. J. Cancer. 2009; 124 (7): 1700–1706. doi: 10.1002/ijc.24104.

29. Tan Y., Xu M., Guo H., Sun X., Kubota T., Hoffman R.M. Anticancer efficacy of methioninase in vivo. Anticancer Res. 1996; 16 (6C): 3931–3936.

30. Tan Y., Sun X., Xu M., Tan X., Sasson A., Rashidi B., Han Q., Tan X., Wang X., An Z., Sun F.X., Hoffman R.M. Efficacy of recombinant methioninase in combination with cisplatin on human colon tumors in nude mice. Clin. Cancer Res. 1999; 5 (8): 2157–2163.

31. Yoshioka T., Wada T., Uchida N., Maki H., Yoshida H., Ide N., Kasai H., Hojo K., Shono K., Maekawa R., Yagi S., Hoffman R.M., Sugita K. Anticancer efficacy in vivo and in vitro, synergy with 5-fluorouracil, and safety of recombinant methioninase. Cancer Res. 1998; 58 (12): 2583–2587.

32. Hoshiya Y., Kubota T., Matsuzaki S.W., Kitajima M., Hoffman R.M. Methionine starvation modulates the efficacy of cisplatin on human breast cancer in nude mice. Anticancer Res. 1996; 16 (6B): 3515–3517.

33. Kokkinakis D.M., Hoffman R.M., Frenkel E.P., Wick J.B., Han Q., Xu M., Tan Y., Schold S.C. Synergy between methionine stress and chemotherapy in the treatment of brain tumor xenografts in athymic mice. Cancer Res. 2001; 61: 4017–4023.

34. Pokrovsky V.S., Kazanov M.D., Dyakov I.N., Pokrovskaya M.V., Aleksandrova S.S. Comparative immunogenicity and structural analysis of epitopes of different bacterial L-asparaginases. BMC Cancer. 2016; 16 (1): 89. doi: 10.1186/s12885-016-2125-4.

35. Sannikova E.P., Bulushova N.V., Cheperegin S.E., Gubaydullin I.I., Chestukhina G.G., Ryabichenko V.V., Shtil A.A. The modified heparin-binding L-asparaginase of Wolinella succinogenes. Mol Biotechnol. 2016; 58 (8–9): 528–539. doi: 10.1007/s12033-016-9950-1.

36. Pokrovsky V.S., Pokrovskaya M.V., Aleksandrova S.S. Physical and chemical properties and antiproliferative activity of recombinant Yersinia pseudotuberculosis L-asparaginase. Appl Biochem Microbiol. 2013; 49(1): 24. [in Russian]

37. Pokrovskaya M.V., Pokrovskiy V.S., Aleksandrova S.S., Anisimova N.Y., Andrianov R.M., Treschalina E.M., Sokolov N.N. Recombinant intracellular Rhodospirillum rubrum L-asparaginase with low L-glutaminase activity and antiproliferative effect. Biochemistry (Moscow) Supplement. Series B: Biomedical Chemistry. 2012; 6 (2): 123–131.

38. Pokrovsky V.S., Treshalina H.M., Lukasheva E.V., Sedakova L.A., Medentzev A.G., Arinbasarova A.Y., Berezov T.T. Enzymatic properties and anticancer activity of l-lysine α-oxidase from Trichoderma cf. aureoviride rifai BKMF-4268D. Anticancer Drugs. 2013; 24 (8): 846–851. doi: 10.1097/CAD.0b013e328362fbe2.

39. Babich O.O., Prosekov A.Y., Pokrovsky V.S., Sokolov N.N., Anisimova N.Y. Recombinant L-phenylalanine ammonia lyase from Rhodosporidium toruloides as a potential anticancer agent. Biotechnol Appl Biochem. 2013; 60 (3): 316–322. doi: 10.1002/bab.1089.

40. Han R.Z., Xu G.C., Dong J.J., Ni Y. Arginine deiminase: recent advances in discovery, crystal structure, and protein engineering for improved properties as an anti-tumor drug. Appl Microbiol Biotechnol. 2016 Jun; 100 (11): 4747–60. doi: 10.1007/s00253-016-7490-z


Review

For citations:


Davydov D.Zh., Morozova Е.А., Komarova М.V., Anufrieva N.V., Zavilgelsky G.B., Manukhov I.V., Demidkina T.V., Treshchalina Е.М., Pokrovsky V.S. USE OF PYRIDOXINE TO INCREASE ANTICACNER ACTIVITY OF METHIONINE-GAMMA-LYASE IN MURINE CANCER MODELS. Siberian journal of oncology. 2017;16(5):27-35. (In Russ.) https://doi.org/10.21294/1814-4861-2017-16-5-27-35

Views: 1192


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)