Preview

Сибирский онкологический журнал

Расширенный поиск

ЭКЗОСОМЫ И ФОРМИРОВАНИЕ РЕЗИСТЕНТНОГО ФЕНОТИПА ОПУХОЛЕВЫХ КЛЕТОК

https://doi.org/10.21294/1814-4861-2018-17-2-49-59

Полный текст:

Аннотация

Экзосомы представляют собой микровезикулы размером 30–100 нм, продуцируемые клетками в окружающую среду и содержащие целый спектр биологически активных молекул, включая различные типы РНК, ДНК, белков и липидов. Ключевой особенностью экзосом является их способность проникать внутрь клеток-реципиентов, вызывая каскад изменений на геномном (за счет интеграции ДНК) и эпигеномном (за счет изменения экспрессии/содержания белков, микроРНК и др.) уровнях. В обзоре рассматриваются современные представления о структуре и механизме действия экзосом, продуци- руемых опухолевыми клетками, и их роли в опухолевой прогрессии и формировании опухолеподобного фенотипа клеток. Особое внимание уделяется вопросу о значении экзосом в развитии резистентности опухолей к терапевтическим воздействиям, в том числе лекарственной устойчивости, резистентности к облучению, гормональной резистентности. Заключительная часть обзора посвящена диагностическим возможностям определения экзосом и перспективам их использования в клинической практике.

Об авторах

М. А. Красильников
НИИ канцерогенеза ФГБУ «НМИЦ им. Н.Н. Блохина» Минздрава России, г. Москва
Россия

доктор биологических наук, профессор, директор НИИ канцерогенеза, заместитель директора по научной работе ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России (г. Москва, Россия)

Author ID (Scopus): 7005790120



А. М. Щербаков
НИИ канцерогенеза ФГБУ «НМИЦ им. Н.Н. Блохина» Минздрава России, г. Москва
Россия

кандидат биологических наук, заведующий лабораторией онкопротеомики НИИ канцерогенеза, ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России (г. Москва, Россия)

SPIN-код: 9526-0047

Author ID: 136087

Author ID (Scopus): 7003636718



С. Е. Семина
НИИ канцерогенеза ФГБУ «НМИЦ им. Н.Н. Блохина» Минздрава России, г. Москва
Россия

кандидат биологических наук, младший научный сотрудник НИИ канцерогенеза, ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России (г. Москва, Россия) s.e.semina@gmail.com.

Author ID (Scopus): 55919370200



Список литературы

1. Johnstone R.M., Adam M., Hammond J.R., Orr L., Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. 1987; 262 (19): 9412–9420.

2. Pan B.T., Teng K., Wu C., Adam M., Johnstone R.M. Electron micro scopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 1985; 101 (3): 942–948.

3. Raposo G., Nijman H.W., Stoorvogel W., Liejendekker R., Harding C.V., Melief C.J., Geuze H.J. B lymphocytes secrete antigen presenting vesicles. J Exp Med. 1996; 183 (3): 1161–1172.

4. Simhadri V.R., Reiners K.S., Hansen H.P., Topolar D., Simhadri V.L., Nohroudi K., Kufer T.A., Engert A., Pogge von Strandmann E. Dendritic cells release HLA B associated transcript 3 positive exosomes to regulate natural killer function. PLoS One. 2008; 3 (10): e3377. doi: 10.1371/ journal.pone.0003377.

5. Admyre C., Johansson S.M., Qazi K.R., Filen J.J., Lahesmaa R., Norman M., Neve E.P., Scheynius A., Gabrielsson S. Exosomes with immune modulatory features are present in human breast milk. J Immunol. 2007; 179 (3): 1969–78.

6. Azevedo L.C., Janiszewski M., Pontieri V., Pedro Mde A., Bassi E., Tucci P.J., Laurindo F.R. Platelet derived exosomes from septic shock patients induce myocardial dysfunction. Crit Care. 2007; 11 (6): R120.

7. Rak J., Guha A. Extracellular vesicles vehicles that spread cancer genes. Bioessays. 2012; 34 (6): 489–497. doi: 10.1002/bies.201100169.

8. Masyuk A.I., Masyuk T.V., Larusso N.F. Exosomes in the pathogen esis, diagnostics and therapeutics of liver diseases. Bioessays. 2012 Jun; 34(6): 48997. doi: 10.1002/bies.201100169.

9. Hanson P.I., Cashikar A. Multivesicular body morphogenesis. Annu Rev Cell Dev Biol. 2012; 28: 337–62. doi: 10.1146/annurev cellbio 092910 154152.

10. Escrevente C., Keller S., Altevogt P., Costa J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer. 2011 Mar 27; 11: 108. doi: 10.1186/1471 2407 11 108.

11. Wubbolts R., Leckie R.S., Veenhuizen P.T., Schwarzmann G., Mo-bius W., Hoernschemeyer J., Slot J.W., Geuze H.J., Stoorvogel W. Proteomic and biochemical analyses of human B cell derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem. 2003; 278 (13): 10963–72. doi: 10.1074/jbc.M207550200.

12. Brouwers J.F., Aalberts M., Jansen J.W., van Niel G., Wauben M.H., Stout T.A., Helms J.B., Stoorvogel W. Distinct lipid compositions of two types of human prostasomes. Proteomics. 2013 May; 13 (10–11): 1660–6. doi: 10.1002/pmic.201200348.

13. Thery C., Ostrowski M., Segura E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 2009 Aug; 9 (8): 581–93. doi: 10.1038/nri2567.

14. Blackwell R.H., Foreman K.E., Gupta G.N. The Role of Cancer Derived Exosomes in Tumorigenicity & Epithelial to Mesenchymal Transition. Cancers (Basel). 2017 Aug 10; 9 (8): pii: E105. doi: 10.3390/ cancers9080105.

15. Ruivo C.F., Adem B., Silva M., Melo S.A. The Biology of Cancer Exosomes: Insights and New Perspectives. Cancer Res. 2017 Dec 1; 77 (23): 6480–6488. doi: 10.1158/0008 5472.CAN 17 0994.

16. Saleem S.N., Abdel-Mageed A.B. Tumor derived exosomes in oncogenic reprogramming and cancer progression. Cell Mol Life Sci. 2015 Jan; 72(1): 110. doi: 10.1007/s00018 014 1710 4.

17. Abd Elmageed Z.Y., Yang Y., Thomas R., Ranjan M., Mondal D., Moroz K., Fang Z., Rezk B.M., Moparty K., Sikka S.C., Sartor O., Abdel-Mageed A.B. Neoplastic reprogramming of patient derived adipose stem cells by prostate cancer cell associated exosomes. Stem Cells. 2014 Apr; 32 (4): 983–97. doi: 10.1002/stem.1619.

18. Abdouh M., Hamam D., Gao Z.H., Arena V., Arena M., Arena G.O. Exosomes isolated from cancer patients’ sera transfer malignant traits and confer the same phenotype of primary tumors to oncosuppressor mutated cells. J Exp Clin Cancer Res. 2017 Aug 30; 36 (1): 113. doi: 10.1186/ s13046 017 0587 0.

19. Kreger B.T., Dougherty A.L., Greene K.S., Cerione R.A., Antonyak M.A. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem. 2016 Sep 16; 291 (38): 19774–85. doi: 10.1074/jbc.M116.725705.

20. Liu Y., Luo F., Wang B., Li H., Xu Y., Liu X., Shi L., Lu X., Xu W., Lu L., Qin Y., Xiang Q., Liu Q. STAT3 regulated exosomal miR 21 pro motes angiogenesis and is involved in neoplastic processes of transformed human bronchial epithelial cells. Cancer Lett. 2016 Jan 1; 370 (1): 125–35. doi: 10.1016/j.canlet.2015.10.011.

21. Cheng Q., Li X., Liu J., Ye Q., Chen Y., Tan S., Liu J. Multiple Myeloma Derived Exosomes Regulate the Functions of Mesenchymal Stem Cells Partially via Modulating miR 21 and miR 146a. Stem Cells Int. 2017; 2017: 9012152. doi: 10.1155/2017/9012152.

22. Fang T., Lv H., Lv G., Li T., Wang C., Han Q., Yu L., Su B., Guo L., Huang S., Cao D., Tang L., Tang S., Wu M., Yang W., Wang H. Tumor derived exosomal miR 1247 3p induces cancer associated fibroblast activation to foster lung metastasis of liver cancer. Nat Commun. 2018 Jan 15; 9 (1): 191. doi: 10.1038/s41467 017 02583 0.

23. Oushy S., Hellwinkel J.E., Wang M., Nguyen G.J., Gunaydin D., Harland T.A., Anchordoquy T.J., Graner M.W. Glioblastoma multiforme derived extracellular vesicles drive normal astrocytes towards a tumour enhancing phenotype. Philosophical transactions of the Royal Society of London. Philos Trans R Soc Lond B Biol Sci. 2018 Jan 5; 373 (1737). pii: 20160477. doi: 10.1098/rstb.2016.0477.

24. Graves L.E., Ariztia E.V., Navari J.R., Matzel H.J., Stack M.S., Fishman D.A. Proinvasive properties of ovarian cancer ascites derived membrane vesicles. Cancer Res. 2004; 64 (19): 7045–7049.

25. Zhao H., Achreja A., Iessi E., Logozzi M., Mizzoni D., Di Raimo R., Nagrath D., Fais S. The key role of extracellular vesicles in the metastatic process. Biochim Biophys Acta. 2018 Jan; 1869 (1): 64–77. doi: 10.1016/j. bbcan.2017.11.005.

26. Jiang X., Hu S., Liu Q., Qian C., Liu Z., Luo D. Exosomal mi croRNA remodels the tumor microenvironment. Peer J. 2017 Dec 22; 5: e4196. doi: 10.7717/peerj.4196.

27. Suchorska W.M., Lach M.S. The role of exosomes in tumor pro gression and metastasis (Review). Oncol Rep. 2016 Mar; 35 (3): 1237–44. doi: 10.3892/or.2015.4507.

28. Fong M.Y., Zhou W., Liu L., Alontaga A.Y., Chandra M., Ashby J., Chow A., O’Connor S.T., Li S., Chin A.R., Somlo G., Palomares M., Li Z., Tremblay J.R., Tsuyada A., Sun G., Reid M.A., Wu X., Swiderski P., Ren X., Shi Y., Kong M., Zhong W., Chen Y., Wang S.E. Breast cancer secreted miR 122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015 Feb; 17 (2): 183–94. doi: 10.1038/ncb3094.

29. Al-Nedawi K., Meehan B., Kerbel R.S., Allison A.C., Rak J. En dothelial expression of autocrine VEGF upon the uptake of tumor derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci USA. 2009 Mar 10; 106 (10): 3794–9. doi: 10.1073/pnas.0804543106.

30. Szollosi D., Rose-Sperling D., Hellmich U.A., Stockner T. Comparison of mechanistic transport cycle models of ABC exporters. Biochim Biophys Acta. 2018 Apr; 1860 (4): 818–32. doi: 10.1016/j. bbamem.2017.10.028.

31. Zheng H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget. 2017 Jul 6; 8 (35): 59950–64. doi: 10.18632/onco target.19048.

32. Beretta G.L., Cassinelli G., Pennati M., Zuco V., Gatti L. Over coming ABC transporter mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem. 2017 Dec 15; 142: 271–89. doi: 10.1016/j.ejmech.2017.07.062.

33. Jaiswal R., Luk F., Dalla P.V., Grau G.E., Bebawy M. Breast cancer derived microparticles display tissue selectivity in the transfer of resistance proteins to cells. PLoS One. 2013 Apr 12; 8 (4): e61515. doi: 10.1371/journal.pone.0061515.

34. Pasquier J., Galas L., Boulange-Lecomte C., Rioult D., Bultelle F., Magal P., Webb G., Le Foll F. Different modalities of intercellular mem brane exchanges mediate cell to cell p glycoprotein transfers in MCF 7 breast cancer cells. J Biol Chem. 2012 Mar 2; 287 (10): 7374–87. doi: 10.1074/jbc.M111.312157.

35. de Souza P.S., Cruz A.L., Viola J.P., Maia R.C. Microparticles induce multifactorial resistance through oncogenic pathways independently of cancer cell type. Cancer Sci. 2015 Jan; 106 (1): 60–8. doi: 10.1111/ cas.12566.

36. Chen W.X., Liu X.M., Lv M.M., Chen L., Zhao J.H., Zhong S.L., Ji M.H., Hu Q., Luo Z., Wu J.Z., Tang J.H. Exosomes from drug resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One. 2014 Apr 16; 9 (4): e95240. doi: 10.1371/journal. pone.0095240.

37. Weiner-Gorzel K., Dempsey E., Milewska M., McGoldrick A., Toh V., Walsh A., Lindsay S., Gubbins L., Cannon A., Sharpe D., O’Sullivan J., Murphy M., Madden S.F., Kell M., McCann A., Furlong F. Overexpression of the microRNA miR 433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med. 2015 May; 4 (5): 745–58. doi: 10.1002/cam4.409.

38. Qin X., Yu S., Zhou L., Shi M., Hu Y., Xu X., Shen B., Liu S., Yan D., Feng J. Cisplatin resistant lung cancer cell derived exosomes increase cisplatin resistance of recipient cells in exosomal miR 100 5p dependent manner. Int J Nanomedicine. 2017 May 15; 12: 3721–33. doi: 10.2147/ IJN.S131516.

39. Au Yeung C.L., Co N.N., Tsuruga T., Yeung T.L., Kwan S.Y., Leung C.S., Li Y., Lu E.S., Kwan K., Wong K.K., Schmandt R., Lu K.H., Mok S.C. Exosomal transfer of stroma derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun. 2016 Mar 29; 7: 11150. doi: 10.1038/ncomms11150.

40. Shao H., Chung J., Lee K., Balaj L., Min C., Carter B.S., Hoch-berg F.H., Breakefield X.O., Lee H., Weissleder R. Chip based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat Commun. 2015 May 11; 6: 6999. doi: 10.1038/ncomms7999.

41. Torreggiani E., Roncuzzi L., Perut F., Zini N., Baldini N. Multi modal transfer of MDR by exosomes in human osteosarcoma. Int J Oncol. 2016 Jul; 49 (1): 189–96. doi: 10.3892/ijo.2016.3509.

42. Qu L., Ding J., Chen C., Wu Z.J., Liu B., Gao Y., Chen W., Liu F., Sun W., Li X.F., Wang X., Wang Y., Xu Z.Y., Gao L., Yang Q., Xu B., Li Y.M., Fang Z.Y., Xu Z.P., Bao Y., Wu D.S., Miao X., Sun H.Y., Sun Y.H., Wang H.Y., Wang L.H. Exosome Transmitted lncARSR Promotes Sunitinib Resistance in Renal Cancer by Acting as a Competing Endogenous RNA. Cancer Cell. 2016 May 9; 29 (5): 653–668. doi: 10.1016/j.ccell.2016.03.004.

43. Min Q.H., Wang X.Z., Zhang J., Chen Q.G., Li S.Q., Liu X.Q., Li J., Liu J., Yang W.M., Jiang Y.H., Xu Y.M., Lin J., Gao Q.F., Sun F., Zhang L., Huang B. Exosomes derived from imatinib resistant chronic myeloid leukemia cells mediate a horizontal transfer of drug resistant trait by delivering miR 365. Exp Cell Res. 2018 Jan 15; 362 (2): 386–393. doi: 10.1016/j.yexcr.2017.12.001.

44. Scherbakov A.M., Sorokin D.V., Tatarskiy V.V.Jr., Prokhorov N.S., Semina S.E., Berstein L.M., Krasil’nikov M.A. The phenomenon of acquired resistance to metformin in breast cancer cells: The interaction of growth pathways and estrogen receptor signaling. IUBMB Life. 2016 Apr; 68 (4): 281–92. doi: 10.1002/iub.1481.

45. Семина С.Е., Руденская Е.А., Миттенберг А.Г., Шабельни-ков С.В., Красильников М.А. Экзосомы и развитие резистентности опухолевых клеток к метформину: пилотное исследование. Успехи молекулярной онкологии 2017; 4 (3): 92–98. doi: 10.17650/2313 805X 2017 4 3 92 98.

46. Hei T.K., Zhou H., Ivanov V.N., Hong M., Lieberman H.B., Brenner D.J., Amundson S.A., Geard C.R. Mechanism of radiation induced bystander effects: a unifying model. J Pharm Pharmacol. 2008 Aug; 60 (8): 943–50. doi: 10.1211/jpp.60.8.0001.

47. Kadhim M., Salomaa S., Wright E., Hildebrandt G., Belyakov O.V., Prise K.M., Little M.P. Non targeted effects of ionising radiation implica tions for low dose risk. Mutat Res. 2013; 752 (2): 84–98. doi: 10.1016/j. mrrev.2012.12.001.

48. Morgan W.F., Sowa M.B. Non targeted effects induced by ion izing radiation: mechanisms and potential impact on radiation induced health effects. Cancer Lett. 2015 Jan 1; 356 (1): 17–21. doi: 10.1016/j. canlet.2013.09.009.

49. Al-Mayah A., Bright S., Chapman K., Irons S., Luo P., Carter D., Goodwin E., Kadhim M. The non targeted effects of radiation are per petuated by exosomes. Mutat Res. 2015 Feb; 772: 38–45. doi: 10.1016/j. mrfmmm.2014.12.007.

50. Al-Mayah A.H., Bright S.J., Bowler D.A., Slijepcevic P., Goodwin E., Kadhim M.A. Exosome Mediated Telomere Instability in Human Breast Epithelial Cancer Cells after X Irradiation. Radiat Res. 2017; 187 (1): 98–106. doi: 10.1667/RR14201.1.

51. Mutschelknaus L., Peters C., Winkler K., Yentrapalli R., Heider T., Atkinson M.J., Moertl S. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation. PLoS One. 2016 Mar 23; 11(3): e0152213. doi: 10.1371/journal.pone.0152213.

52. Milani A., Geuna E., Mittica G., Valabrega G. Overcoming endo crine resistance in metastatic breast cancer: Current evidence and future directions. World J Clin Oncol. 2014; 5 (5): 990–1001. doi: 10.5306/ wjco.v5.i5.990.

53. Viedma-Rodriguez R., Baiza-Gutman L., Salamanca-Gomez F., Diaz-Zaragoza M., Martinez-Hernandez G., Ruiz Esparza-Garrido R., Velazquez-Flores M.A., Arenas-Aranda D. Mechanisms associated with resistance to tamoxifen in estrogen receptor positive breast cancer (review). Oncol Rep. 2014 Jul; 32 (1): 3–15. doi: 10.3892/or.2014.3190.

54. Suba Z. The pitfall of the transient, inconsistent anticancer capacity of antiestrogens and the mechanism of apparent antiestrogen resistance. Drug Des Devel Ther. 2015 Aug 6; 9: 4341–53. doi: 10.2147/ DDDT.S89536.

55. Красильников М.А., Щербаков А.М., Семина С.Е. Сигнальные пути, регулируемые эстрогенами, и опухолевый рост. Молекулярный канцерогенез. М., 2016. 103–117.

56. Clarke R., Tyson J.J., Dixon J.M. Endocrine resistance in breast cancer An overview and update. Mol Cell Endocrinol. 2015 Dec 15; 418 Pt 3: 220–34. doi: 10.1016/j.mce.2015.09.035.

57. Petrelli F., Tomasello G., Barni S., Lonati V., Passalacqua R., Ghidini M. Clinical and pathological characterization of HER2 muta tions in human breast cancer: a systematic review of the literature. Breast Cancer Res Treat. 2017 Nov; 166 (2): 339–349. doi: 10.1007/s10549 017 4419 x.

58. Arpino G., De Angelis C., Giuliano M., Giordano A., Falato C., De Laurentiis M., De Placido S. Molecular mechanism and clinical impli cations of endocrine therapy resistance in breast cancer. Oncology. 2009; 77 Suppl 1: 23–37. doi: 10.1159/000258493.

59. Zhou Y., Eppenberger-Castori S., Eppenberger U., Benz C.C. The NFkappaB pathway and endocrine resistant breast cancer. Endocr Relat Cancer. 2005 Jul; 12 Suppl 1: S37–46.

60. Ghosh A., Awasthi S., Peterson J.R., Hamburger A.W. Regulation of tamoxifen sensitivity by a PAK1 EBP1 signalling pathway in breast cancer. Br J Cancer. 2013 Feb 19; 108 (3): 557–63. doi: 10.1038/bjc.2013.11.

61. Scherbakov A.M., Andreeva O.E., Shatskaya V.A., Krasil’nikov M.A. The relationships between snail1 and estrogen receptor signaling in breast cancer cells. J Cell Biochem. 2012 Jun; 113 (6): 2147–55. doi: 10.1002/ jcb.24087.

62. Gakhar G., Hua D.H., Nguyen T.A. Combinational treatment of gap junctional activator and tamoxifen in breast cancer cells. Anticancer Drugs. 2010 Jan; 21 (1): 77–88. doi: 10.1097/CAD.0b013e328333d557.

63. Hiscox S., Jiang W.G., Obermeier K., Taylor K., Morgan L., Burmi R., Barrow D., Nicholson R.I. Tamoxifen resistance in MCF7 cells promotes EMT like behaviour and involves modulation of beta catenin phosphorylation. Int J Cancer. 2006 Jan 15; 118 (2): 290–301.

64. Xu C.G., Yang M.F., Ren Y.Q., Wu C.H., Wang L.Q. Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resist ance in breast cancer cells. Eur Rev Med Pharmacol Sci. 2016 Oct; 20 (20): 4362–4368.

65. Wei Y., Lai X., Yu S., Chen S., Ma Y., Zhang Y., Li H., Zhu X., Yao L., Zhang J. Exosomal miR 221/222 enhances tamoxifen resistance in recipi ent ER positive breast cancer cells. Breast Cancer Res Treat. 2014 Sep; 147 (2): 423–31. doi: 10.1007/s10549 014 3037 0.

66. Семина С.Е., Багров Д.В., Красильников М.А. Межклеточные взаимодействия и развитие гормональной резистентности клеток. Успехи молекулярной онкологии 2015; 2 (2): 50–55.

67. Semina S.E., Scherbakov A.M., Kovalev S.V., Shevchenko V.E., Krasil’nikov M.A. Horizontal Transfer of Tamoxifen Resistance in MCF 7 Cell Derivates: Proteome Study. Cancer Invest. 2017; 35 (8): 506–18. doi: 10.1080/07357907.2017.1368081.

68. He Y.J., Wu J.Z., Ji M.H., Ma T., Qiao E.Q., Ma R., Tang J.H. miR 342 is associated with estrogen receptor alpha expression and response to tamoxifen in breast cancer. Exp Ther Med. 2013 Mar; 5 (3): 813–818.

69. Zhao Y., Deng C., Lu W., Xiao J., Ma D., Guo M., Recker R.R., Gatalica Z., Wang Z., Xiao G.G. let 7 microRNAs induce tamoxifen sensitivity by downregulation of estrogen receptor alpha signaling in breast cancer. Mol Med. 2011; 17 (11–12): 1233–41. doi: 10.2119/ molmed.2010.00225.

70. Meng D., Li Z., Ma X., Fu L., Qin G. MicroRNA 1280 modu lates cell growth and invasion of thyroid carcinoma through targeting estrogen receptor alpha. Cell Mol Biol (Noisy le grand). 2016 Mar 20; 62 (3): 1–6.

71. Hossain A., Kuo M.T., Saunders G.F. Mir 17 5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 2006 Nov; 26 (21): 8191–201.

72. Foley N.H., Bray I., Watters K.M., Das S., Bryan K., Bernas T., Prehn J.H., Stallings R.L. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ. 2011 Jul; 18 (7): 1089–98. doi: 10.1038/ cdd.2010.172.

73. Bergamaschi A., Katzenellenbogen B.S. Tamoxifen downregula tion of miR 451 increases 14 3 3zeta and promotes breast cancer cell survival and endocrine resistance. Oncogene. 2012 Jan 5; 31 (1): 39–47. doi: 10.1038/onc.2011.223.

74. Sachdeva M., Wu H., Ru P., Hwang L., Trieu V., Mo Y.Y. MicroRNA 101 mediated Akt activation and estrogen independent growth. Oncogene. 2011 Feb 17; 30 (7): 822–31. doi: 10.1038/onc.2010.463.

75. Phuong N.T., Kim S.K., Im J.H., Yang J.W., Choi M.C., Lim S.C., Lee K.Y., Kim Y.M., Yoon J.H., Kang K.W. Induction of methionine adeno syltransferase 2A in tamoxifen resistant breast cancer cells. Oncotarget. 2016 Mar 22; 7 (12): 13902–16. doi: 10.18632/oncotarget.5298.

76. Yu X., Li R., Shi W., Jiang T., Wang Y., Li C., Qu X. Silencing of MicroRNA 21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K AKT mTOR pathway in breast cancer cells. Biomed Pharmacother. 2016 Feb; 77: 37–44. doi: 10.1016/j.biopha.2015.11.005.

77. Melo S.A., Sugimoto H., O’Connell J.T., Kato N., Villanueva A., Vidal A., Qiu L., Vitkin E., Perelman L.T., Melo C.A., Lucci A., Ivan C., Calin G.A., Kalluri R. Cancer exosomes perform cell independent micro RNA biogenesis and promote tumorigenesis. Cancer Cell. 2014 Nov 10; 26 (5): 707–21. doi: 10.1016/j.ccell.2014.09.005.

78. Wang N., Song X., Liu L., Niu L., Wang X., Song X., Xie L. Circulat ing exosomes contain protein biomarkers of metastatic non small cell lung cancer. Cancer Sci. 2018 Mar 23. doi: 10.1111/cas.13581.

79. Muluhngwi P., Klinge C.M. Identification of miRNAs as biomark ers for acquired endocrine resistance in breast cancer. Mol Cell Endocrinol. 2017 Nov 15; 456: 76–86. doi: 10.1016/j.mce.2017.02.004.

80. Li X., Wang X. The emerging roles and therapeutic potential of exosomes in epithelial ovarian cancer. Mol Cancer. 2017 May 15; 16 (1): 92. doi: 10.1186/s12943 017 0659 y.

81. Soekmadji C., Nelson C.C. The Emerging Role of Extracel lular Vesicle Mediated Drug Resistance in Cancers: Implications in Advanced Prostate Cancer. Biomed Res Int. 2015; 2015: 454837. doi: 10.1155/2015/454837.

82. Yang G., Shu X.O., Ruan Z.X., Cai Q.Y., Jin F., Gao Y.T., Zheng W. Genetic polymorphisms in glutathione S transferase genes (GSTM1, GSTT1, GSTP1) and survival after chemotherapy for invasive breast carcinoma. Cancer 2005; 103 (1): 52–58.

83. Miyake T., Nakayama T., Naoi Y., Yamamoto N., Otani Y., Kim S.J., Shimazu K., Shimomura A., Maruyama N., Tamaki Y., Noguchi S. GSTP1 expression predicts poor pathological complete response to neoadjuvant chemotherapy in ER negative breast cancer. Cancer Sci. 2012 May; 103 (5): 913–20. doi: 10.1111/j.1349 7006.2012.02231.x.

84. Deng X., Yang X., Cheng Y., Liu X., Li X., Zhao R., Qin C., Lu Q., Yin C. GSTP1 and GSTO1 single nucleotide polymorphisms and the re sponse of bladder cancer patients to intravesical chemotherapy. Sci Rep. 2015 Sep 10; 5: 14000. doi: 10.1038/srep14000.

85. Sun N., Sun X., Chen B., Cheng H., Feng J., Cheng L., Lu Z. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non small cell lung cancer. Cancer Chemother Pharmacol. 2010 Feb; 65 (3): 437–46. doi: 10.1007/s00280 009 1046 1.

86. Huang Z.H., Hua D., Du X. Polymorphisms in p53, GSTP1 and XRCC1 predict relapse and survival of gastric cancer patients treated with oxaliplatin based adjuvant chemotherapy. Cancer Chemother Pharmacol. 2009 Oct; 64 (5): 1001–7. doi: 10.1007/s00280 009 0956 2.

87. Zaanan A., Dalban C., Emile J.F., Blons H., Flejou J.F., Goumard C., Istanbullu M., Calmel C., Alhazmi K., Validire P., Louvet C., de Gramont A., Laurent-Puig P., Taieb J., Praz F. ERCC1, XRCC1 and GSTP1 Single Nucleotide Polymorphisms and Survival of Patients with Colon Cancer Receiving Oxaliplatin Based Adjuvant Chemotherapy. J Cancer. 2014 May 2; 5 (6): 425–32. doi: 10.7150/jca.8594.

88. Li J.Z., Tian Z.Q., Jiang S.N., Feng T. Effect of variation of ABCB1 and GSTP1 on osteosarcoma survival after chemotherapy. Genet Mol Res. 2014 Apr 25; 13 (2): 3186–92. doi: 10.4238/2014.April.25.3.

89. Huang G., Mills L., Worth L.L. Expression of human glutathione S transferase P1 mediates the chemosensitivity of osteosarcoma cells. Mol Cancer Ther 2007; 6 (5): 1610–19. doi: 10.1158/1535 7163.MCT 06 0580.

90. Yang S.J., Wang D.D., Li J., Xu H.Z., Shen H.Y., Chen X., Zhou S.Y., Zhong S.L., Zhao J.H., Tang J.H. Predictive role of GSTP1 containing exosomes in chemotherapy resistant breast cancer. Gene. 2017 Aug 5; 623: 5–14. doi: 10.1016/j.gene.2017.04.031.

91. Чевкина Е.М., Щербаков А.М., Журавская А.Ю., Семина С.Е., Комельков А.В., Красильников М.А. Экзосомы и передача (эпи)генетической информации опухолевыми клетками. Успехи молекулярной онкологии 2015; 2 (3): 8–20.


Для цитирования:


Красильников М.А., Щербаков А.М., Семина С.Е. ЭКЗОСОМЫ И ФОРМИРОВАНИЕ РЕЗИСТЕНТНОГО ФЕНОТИПА ОПУХОЛЕВЫХ КЛЕТОК. Сибирский онкологический журнал. 2018;17(2):49-59. https://doi.org/10.21294/1814-4861-2018-17-2-49-59

For citation:


Krasilnikov M.A., Scherbakov A.M., Semina S.E. EXOSOMES AND DEVELOPMENT OF TUMOR CELL RESISTANT PHENOTYPE. Siberian journal of oncology. 2018;17(2):49-59. (In Russ.) https://doi.org/10.21294/1814-4861-2018-17-2-49-59

Просмотров: 152


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)