Preview

Siberian journal of oncology

Advanced search

RADIOPHARMACEUTICALS BASED ON THE GLUCOSE DERIVATIVES FOR TUMOR DIAGNOSIS

https://doi.org/10.21294/1814-4861-2018-17-2-71-81

Abstract

The purpose of the study was to review available literature on the efficacy of radiopharmaceuticals based on glucose derivatives labeled with radioactive isotopes for detection of various cancers. Material and methods. A systematic literature review was performed using the Scopus, Web of Science, MedLine, Cochrane Library, EMBASE, and Global Health databases from 2000 to 2016. Out of 900 papers in the field of nuclear medicine, 58 were included into the review. Results. 18F-fluoro-2-deoxy-D-glucose (18F-FDG) has been approved to be a powerful imaging tool for the detection of various cancers as well as for the assessment of tumor extent and therapy response. There is a continuous search for new more specific and effective radiopharmaceuticals for visualization of tumor tissue. Many studies are devoted to the development of radiopharmaceuticals based on technetium-99m labeled glucose derivatives for tumor visualization. Russian researches have made a significant progress in the development of imaging agents for single-photon emission computed tomography. Conclusion. Despite the widespread use of positron emission tomography technologies, which have proved to be effective, the specialists still have a great interest in radiopharmaceuticals based on technetium-99m. The literature review suggests that the emergence of a diagnostic radiopharmaceutical based on technetium-99m labeled glucose derivative will help to improve the availability of nuclear medicine methods and their effectiveness.

About the Authors

R. V. Zeltchan
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk
Russian Federation

MD, PhD, Radiologist, Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medi‑ cal Center, Russian Academy of Sciences (Tomsk, Russia)

Researcher ID: C-8597-2012

Scopus Author ID: 56901332100



A. A. Medvedeva
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk
Russian Federation

MD, PhD, Senior Researcher, Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences (Tomsk, Russia)

Researcher ID: D-7455-2012.

Scopus Author ID: 57188995343



I. G. Sinilkin
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk
Russian Federation

MD, PhD, Senior Researcher, Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences (Tomsk, Russia)

Researcher ID: С-9282-2012

Scopus Author ID: 6506263379



O. V. Bragina
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk
Russian Federation

MD, PhD, Researcher, Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medi‑ cal Center, Russian Academy of Sciences (Tomsk, Russia)

Researcher ID: E-9732-2017

Scopus Author ID: 57190936256



V. J. Chernov
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk; National Research Tomsk Polytechnic University, Tomsk
Russian Federation

MD, DSc,Professor, Deputy Director for Science and Innovation, Head of Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences (Tomsk, Russia)

Researcher ID: B-6789-2016

Scopus Author ID: 7201429550



References

1. Nikolaev A.Ya. Biological chemistry. Moscow, 2004; 566. [in Russian]

2. Bertagna F., Treglia G., Baiocchi G. L., Giubbini R. F18 FDG PET/ CT for evaluation of intraductal papillary mucinous neoplasms (IPMN): a review of the literature. Jpn J Radiol. 2013; 31 (4): 229–36. doi: 10.1007/ s11604 012 0176 2.

3. Pauwels E.K.J., Coumou A.W., Kostkiewicz M., Kairemo K. [18F] Fluoro 2 Deoxy D Glucose Positron Emission Tomography/ Computed Tomography Imaging in Oncology: Initial Staging and Evalu ation of Cancer Therapy. Med Princ Pract. 2013; 22 (5): 427–37. doi: 10.1159/000346303.

4. Zhang L., Wang Y., Lei J., Tian J., Zhai Y. Dual time point 18FDG PET/CT versus single time point 18FDG PET/CT for the differential diagnosis of pulmonary nodules: a meta analysis. Acta Radiol. 2013 Sep; 54 (7): 770–7. doi: 10.1177/0284185113481594.

5. Groheux D., Giacchetti S., Moretti J.L., Porcher R., Espié M., Lehmann-Che J., de Roquancourt A., Hamy A.S., Cuvier C., Vercellino L., Hindié E. Correlation of high 18F FDG uptake to clinical, pathological and biological prognostic factors in breast cancer. Eur J Nucl Med Mol Imaging. 2011 Mar; 38 (3): 426–35. doi: 10.1007/s00259 010 1640 9.

6. Kubota K., Matsuzawa T., Amemiya A., Kondo M., Fujiwara T., Watanuki S., Ito M., Ido T.J. Imaging of breast cancer with [18F]fluoro deoxyglucose and positron emission tomogram. J Comput Assist Tomogr. 1989 Nov Dec; 13 (6): 1097–8.

7. Titskaya A.A., Chernov V.I., Slonimskaya E.M., Sinilkin I.G. Com parison of the results of mammoscintigraphy with 99mTc technetril in planar and tomographic regimes. Medical radiology and radiation safety. 2008. 53 (5): 51–60. [in Russian]

8. Koolen B.B., Valdés Olmos R.A., Elkhuizen P.H., Vogel W.V., Vrancken Peeters, M.-J.T.F.D., Rodenhuis S., Rutgers E.J.T. Locoregional lymph node involvement on 18F FDG PET/CT in breast cancer patients scheduled for neoadjuvant chemotherapy. Breast Cancer Res Treat. 2012 Aug; 135 (1): 231–40. doi: 10.1007/s10549 012 2179 1.

9. Riegger C., Herrmann J., Nagarajah J., Hecktor J., Kuemmel S., Otterbach F., Heusner T.A. Whole body FDG PET/CT is more accurate than conventional imaging for staging primary breast cancer patients. Eur J Nucl Med Mol Imaging. 2012 May; 39 (5): 852–63. doi: 10.1007/ s00259 012 2077 0.

10. Allal A.S., Dulguerov P., Allaoua M., Haenggeli C.A., El Ghazi E.A., Lehmann W., Slosman D.O. Standardized Uptake Value of 2 [18F] Fluoro 2 Deoxy D Glucose in Predicting Outcome in Head and Neck Carcinomas Treated by Radiotherapy With or Without Chemotherapy. J Clin Oncol. 2002; 20 (5): 1398–1404. doi:10.1200/jco.20.5.1398.

11. Chernov V.I., Zel’chan R.V., Titskaya A.A., Sinilkin I.G., Chizhevskaya S.Yu., Surkova P.V., Choinzonov E.L. The use of gamma scintigraphy with 99mTc technetril in the complex diagnosis and evaluation of the efficacy of neoadjuvant chemotherapy for malignant tumors of the larynx and laryngopharynx. Medical radiology and radiation safety. 2011; 56 (2): 38–43. [in Russian]

12. Gao S., Li S., Yang X., Tang Q. 18FDG PET CT for distant me tastases in patients with recurrent head and neck cancer after definitive treatment. A meta analysis. Oral Oncol. 2014 Mar; 50 (3): 163–7. doi: 10.1016/j.oraloncology.2013.12.002.

13. Lapela M., Grénman R., Kurki T., Joensuu H., Leskinen S., Lindholm P., Haaparanta M., Ruotsalainen U., Minn H. Head and neck cancer: detection of recurrence with PET and 2 [F18] fluoro 2 deoxy D glucose. Radiology. 1995; 197 (1): 205–211. doi:10.1148/ radiology.197.1.7568825

14. Carlson E.R., Schaefferkoetter J., Townsend D., McCoy J.M., Campbell P.D., Long M. The Use of Multiple Time Point Dynamic Positron Emission Tomography/Computed Tomography in Patients With Oral/Head and Neck Cancer Does Not Predictably Identify Metastatic Cervical Lymph Nodes. J Oral Maxillofac Surg. 2013 Jan; 71 (1): 162–77. doi: 10.1016/j. joms.2012.03.028.

15. Javery O., Shyn P., Mortele K. FDG PET or PET/CT in patients with pancreatic cancer: when does it add to diagnostic CT or MRI? Clinical Imaging. 2013; 37 (2): 295–301. doi:10.1016/j.clinimag.2012.07.005

16. Xu H.-X., Chen T., Wang W.-Q., Wu C.-T., Liu C., Long J., Yu X.-J. Metabolic tumour burden assessed by 18F FDG PET/CT associated with serum CA19 9 predicts pancreatic cancer outcome after resection. Eur J Nucl Med Mol Imaging. 2014 Jun; 41 (6): 1093–102. doi: 10.1007/ s00259 014 2688 8.

17. Kim Y.-J., Yun M., Lee W.J., Kim K.S., Lee J.D. Usefulness of 18 F FDG PET in intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging. 2003; 30 (11): 1467–1472. doi:10.1007/s00259 003 1297 8

18. Sun G., Tian J., Gorospe E.C., Johnson G.B., Hunt C.H., Lutzke L.S., Wang K.K. Utility of baseline positron emission tomography with computed tomography for predicting endoscopic resectability and survival outcomes in patients with early esophageal adenocarcinoma. J Gastroenterol Hepatol. 2013; 28 (6): 975–981. doi:10.1111/jgh.12148.

19. Kamel I.R., Cohade C., Neyman E., Fishman E.K., Wahl R.L. Incremental value of CT in PET/CT of patients with colorectal carcinoma. Abdominal Imaging. 2004; 29 (6): 663–668. doi:10.1007/s00261 003 0163 2.

20. Bonanni L., de’ Liguori Carino N., Deshpande R., Ammori B.J., Sherlock D.J., Valle J.W., O’Reilly D.A. A comparison of diagnostic imag ing modalities for colorectal liver metastases. Eur J Surg Oncol (EJSO). 2014; 40 (5): 545–550. doi:10.1016/j.ejso.2013.12.023

21. Stone W.Z., Wymer D.C., Canales B.K. Fluorodeoxyglucose Pos itron Emission Tomography/Computed Tomography Imaging for Adrenal Masses in Patients with Lung Cancer: Review and Diagnostic Algorithm. J Endourol. 2014 Jan; 28 (1): 104–11. doi: 10.1089/end.2013.0380.

22. Gould M.K., Maclean C.C., Kuschner W.G., Rydzak C.E., Ow-ens D.K. Accuracy of Positron Emission Tomography for Diagnosis of Pulmonary Nodules and Mass Lesions. JAMA. 2001; 285 (7): 914–24. doi:10.1001/jama.285.7.914.

23. Tandberg D.J., Gee N.G., Chino J.P., D’Amico T.A., Ready N.E., Coleman R.E., Kelsey C.R. Are discordant positron emission tomography and pathological assessments of the mediastinum in non–small cell lung cancer significant? J Thor Cardiovasc Surg. 2013; 146 (4): 796–801. doi:10.1016/j.jtcvs.2013.05.027

24. Hoh C., Figlin R., Belldegrun A. Evaluation of renal cell carcinoma with whole body FDG PET. J Nucl Med. 1996; 37: 141–147.

25. Ramdave S., Thomas G.W., Berlangieri S.U., Bolton D.M., Davis I., Danguy H.T., Macgregor D., Scott A.M. Clinical role of F 18 fluorode oxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol. 2001; 166: 825–830.

26. Aide N., Cappele O., Bottet P., Bensadoun H., Regeasse A., Comoz F., Agostini D. Efficiency of [18F] FDG PET in characterising renal cancer and detecting distant metastases: a comparison with CT. Eur J Nucl Med Mol Imaging. 2003; 30: 1236–45.

27. Kang D.E., White R.L., Zuger J.H., Sasser H.C., Teigland C.M. Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol. 2004; 171: 1806–1809.

28. Seto E., Segall G.M., Terris M.K. Positron emission tomography detection of osseous metastases of renal cell carcinoma not identified on bone scan. Urology. 2000; 55: 286.

29. Albers P., Bender H., Yilmaz H., Schoeneich G., Biersack H.J., Mueller S.C. Positron emission tomography in the clinical staging of patients with stage I and II testicular germ cell tumors. Urology. 1999; 53: 808–811.

30. Bajorin D.F., Herr H., Motzer R.J., Bosl G.J. Current perspectives on the role of adjunctive surgery in combined modality treatment for pa tients with germ cell tumors. Semin Oncol. 1992; 19: 148–158.

31. Cremerius U., Effert P.J., Adam G., Sabri O., Zimmy M., Wagenknecht G., Jakse G., Buell U. FDG PET for detection and therapy control of metastatic germ cell tumour. J Nucl Med. 1998; 39: 815–822.

32. Kühnel G., Horn L.C., Fischer U., Hesse S., Seese A., Georgi P., Kluge R. 18F FDG positronen Emissions Tomographie bei Zervixkarzi nom: Erste Ergebnisse. Zbl Gynacol. 2001; 4: 123.

33. Jang H.J., Lee K.H., Kim Y.H. The role PET for predicting prog nosis in squamous cell type uterine cervical carcinoma patients. J. Nucl. Med. 2002; 43 (3): 28P.

34. Bats A.S., Hugonnet F., Huchon C., Bensaid C., Pierquet-Ghazzar N., Faraggi M., Lécuru F. Prognostic significance of mediastinal 18F FDG uptake in PET/CT in advanced ovarian cancer. Eur J Nucl Med Mol Imag ing. 2012 Mar; 39 (3): 474–80. doi: 10.1007/s00259 011 1984 9.

35. Chang T.C., Law K.S., Hong J.H., Lai C.H., Ng K.K., Hsueh S., See L.C., Chang Y.C., Tsai C.S., Chou H.H., Huang K.G., Liou J.D., Lin C.T., Chao A., Chen M.Y., Wu T.I., Ma S.Y., Yen T.C. Positron emission tomogra phy for unexplained elevation of serum squamous cell carcinoma antigen levels during follow up for patients with cervical malignancies: a phase II study. Cancer. 2004; 101: 164–171.

36. Zhao Q., Feng Y., Mao X., Qie M. Prognostic value of fluorine 18 fluorodeoxyglucose positron emission tomography or PET computed tomography in cervical cancer: A meta analysis. Int J Gynecol Cancer. 2013 Sep; 23 (7): 1184–90. doi: 10.1097/IGC.0b013e31829ee012.

37. Belhocine T., De Barsy C., Hustinx R., Willems-Foidart J. Useful ness of (18)F FDG PET in the post therapy surveillance of endometrial carcinoma. Eur J Nucl Med Mol Imaging. 2002; 29: 1132–1139.

38. Saga T., Higashi T., Ishimori T., Mamede M., Nakamoto Y., Mukai T., Fujita T., Togashi K., Yura S., Higuchi T., Kita M., Fujii S., Konishi J. Clinical value of FDG PET in the follow up of post operative patients with endometrial cancer. Ann Nucl Med. 2003; 17: 197–203.

39. Buchmann I., Reinhardt M., Elsner K., Bunjes D., Altehoefer C., Finke J., Moser E., Glatting G., Kotzerke J., Guhlmann C.A., Schirrmeister H., Reske S.N. 2 (Fluorine 18) fluoro 2 deoxy D glucose positron emission tomography in the detection and staging of malignant lymphoma. Cancer. 2001; 91: 889–899.

40. Gallamini A., Barrington S.F., Biggi A., Chauvie S., Kostakoglu L., Gregianin M., Seymour J.F. The predictive role of interim Positron Emission Tomography on Hodgkin lymphoma treatment outcome is confirmed using the 5 point scale interpretation criteria. Haematologica. 2014; 99: 1107–1113.

41. Luminari S., Biasoli I., Arcaini L., Versari A., Rusconi C., Merli F., Spina M., Ferreri A.J., Zinzani P.L., Gallamini A., Mastronardi S., Boccomini C., Gaidano G., D’Arco A.M., Di Raimondo F., Carella A.M., antoro A., Musto P., Federico M. The use of FDG PET in the initial staging of 142 patients with follicular lymphoma: A retrospective study from the FOLL05 randomized trial of the Fondazione Italiana Linfomi. Ann Oncol. 2013 Aug; 24 (8): 2108–12. doi: 10.1093/annonc/mdt137.

42. Pellegrini C., Argnani L., Broccoli A., Stefoni V., Derenzini E., Gandolfi L., Casadei B., Maglie R., Pileri S., Zinzani P.L. Prognostic Value of Interim Positron Emission Tomography in Patients With Peripheral T Cell Lymphoma. Oncologist. 2014 Jul; 19 (7): 746–50. doi: 10.1634/ theoncologist.2013 0463.

43. Pakos E.E., Fotopoulos A.D., Ioannidis J.P. A FDG PET for evaluation of bone marrow infiltration in staging of lymphoma a meta analysis. J Nucl Med. 2005; 46: 958–963.

44. Torizuka T., Nakamura F., Kanno T., Futatsubashi M., Yoshikawa E., Okada H., Kobayashi M., Ouchi Y. Early therapy monitoring with FDG PET in aggressive non Hodgkin’s lymphoma and Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2004; 31: 312–228.

45. Juweid M.E., Wiseman G.A., Vose J.M., Ritchie J.M., Menda Y., Wooldridge J.E., Mottaghy F.M., Rohren E.M., Blumstein N.M., Stolpen A., Link B.K., Reske S.N., Graham M.M., Cheson B.D. Response assess ment of aggressive non Hodgkin’s lymphoma by integrated international workshop criteria and Fluorine 18F Fuoredeoxyglucose positron emission tomography. J Med Oncol. 2005; 23: 4652–61.

46. Biggi A., Gallamini A., Chauvie S., Hutchings M., Kostakoglu L., Gregianin M., Meignan M., Malkowski B., Hofman M.S., Barrington S.F. International validation study for interim PET in ABVD treated, advanced stage Hodgkin lymphoma: Interpretation criteria and concordance rate among reviewers. J Nucl Med. 2013 May; 54 (5): 683–90. doi: 10.2967/ jnumed.112.110890.

47. Charronneau E., Mathieu J-P., Morin C. Large scale synthesis and radiolabelling of 6 deoxy 6 iodo D glucose (6 DIG). Appl Radioat Isot. 1998; 49: 1605–1607.

48. Matte G., Adam M., Lyster D. Biological evaluation of 2 fluoro 2 [123I]Iodo mannose (FIM). Nucl Med Biol. 2001; 28 (6): 679–682.

49. Brunet-Desruet M.D., Ghezzi C., Morin C., Comet M., Fagret D. Biological Evaluation of Two Iodine 123 Labeled D Glucose Acetals Prepared as Glucose Transporter. Nucl Med. Biol. 1998; 25 (5): 473–80.

50. Chernov V.I., Kravchuk T.L., Zel’chan R.V., Gol’dberg V.E. ECG synchronized perfusion tomoscintigraphy of myocardium with 99mTc technetril in the assessment of acute and chronic cardiotoxicity of chemotherapeutic drugs. Medical radiology and radiation safety. 2012; 57 (4): 32–39. [in Russian]

51. Hee-Kyung Lee, Dae-Hybk Moon, Jin-Sook Ryu. Radioisotope labeled complexes of glucose derivatives and kits for the preparation thereof. Patent United States Pub. No.: 2003/0120046 A. 2003 Jun 26.

52. Ozker S.K., Collier B.D. Imaging methods and compositions. Patent United States Pub. No.: 06099822A. 2000.

53. Chen Y., Huang Z.W., He L., Zheng S.L., Li J.L., Qin D.L. Synthesis and evaluation of a technetium 99m labeled diethylentriaminepentaacetate deoxyglucose complex 99mTc DTPA DG as a potential imaging modality for tumors. Appl Radiat Isot. 2006; 64 (3): 342–347.

54. Cheng D., Rusckowski M., Wang Y.., Liu Y., Liu G., Liu X., Hnatowich D. A Brief Evaluation of Tumor Imaging in Mice with 99mTc glucarate Including a Comparison with 18F FDG. Curr Radiopharm. 2011; 4 (1): 5–9.

55. Welling M.M., Alberto R. Performance of a 99mTc labelled 1 thio beta D glucose 2,3,4,6 tetra acetate analogue in the detection of infections and tumours in mice: a comparison with [18F]FDG. Nucl Med Commun. 2010; 31 (3): 239–248.

56. Yang D.J., Kim C.G., Schechter N.R., Azhdarinia A., Yu D.F., Oh C.S., Bryant J.L., Won J.J., Kim E.E., Podoloff D.A. Imaging with 99mTc ECDG targeted at the multifunctional glucose transport system: feasibility study with rodents. Radiology. 2003; 226 (2): 465–473.

57. Zeltchan R., Medvedeva A., Sinilkin I., Chernov V., Bragina O., Stasyuk E., Rogov A., Il’Ina E., Larionova L., Skuridin V., Dergilev A. Experimental study of radiopharmaceuticals based on technetium 99m labeled derivative of glucose for tumor diagnosis. 8th international scien tific conference on issues of physics and technology in science, industry and medicine. Tomsk, 01–03 June 2016. 012054.

58. Chernov V.I., Medvedeva A.A., Sinilkin I.G., Zel’chan R.V., Bra-gina O.D., Skuridin V.S. Experience in the development of innovative radiopharmaceuticals in Tomsk Research Institute of Oncology. Siberian Journal of Oncology. 2015. Suppl. 2. 45–47. [in Russian]


Review

For citations:


Zeltchan R.V., Medvedeva A.A., Sinilkin I.G., Bragina O.V., Chernov V.J. RADIOPHARMACEUTICALS BASED ON THE GLUCOSE DERIVATIVES FOR TUMOR DIAGNOSIS. Siberian journal of oncology. 2018;17(2):71-81. (In Russ.) https://doi.org/10.21294/1814-4861-2018-17-2-71-81

Views: 1120


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)