Preview

Siberian journal of oncology

Advanced search

STUDY OF DENDRITIC CELL MIGRATION USING CELL-IQ ANALYSIS SYSTEM

https://doi.org/10.21294/1814-4861-2018-17-4-14-23

Abstract

Dendritic cells (DCs) belong to specialized pool of antigen-presenting cells with high functional plasticity and manifest with immunostimulatory or immunosuppressive potential  depending on sequence and combination of microenvironment stimuli, which determine their  differentiation, maturation and activation. The use of antitumor DCs vaccines is based  on the ability of DCs specifically activated in vitro migrate for antigen presentation to T- lymphocytes. We studied the components of the tumor microenvironment that are capable of inhibiting DCs migration. The study of the mobility of DCs in Cell-IQ experimental  analytical system showed the presence of an inverse correlation of high strength between  the average trajectory speed and the level  of immunosuppressive factors (ISFs) in  supernatants of cultured skin melanoma cells (TGFβ1, IL-10, IL-18, VEGF-A, EGF, FGF, HGF,  sFASL (p<0.01). An inverse relation of high force was found between the movement angle of the DCs population and the expression of cancer testis antigens (CTAs) and other tumor- associated antigens (TAAs) on tumor cells (Melan A, tyrosinase, families of MAGE, BAGE, NY- ESO-1 (p<0.01)). The speed of DCs movement in culture system with melanoma cells #894  was 30.10±2.23 μm/h and differed from that in the presence of IL-10 1 ng/ml (10.45±0.52  μm/h), TGFβ1 10 ng/ml (14.32±0.42 μm/h), VEGF 50 ng/ml (18.7±1.89 μm/h) (p<0.05).  One can assume that content of this ISFs in the blood is one of the factors determining clinical efficacy of DCs immune therapy.

About the Authors

T. L. Nekhaeva
National Medical Research Centre of Oncology named after N.N. Petrov, Ministry of Health of Russia
Russian Federation

68, Leningradskaya Str., 197758-St.-Petersburg, Russia

MD, PhD, Researcher of N.N. Petrov Research Institute of Oncology, Department of Oncoimmunology

Researcher ID (WOS): L-7268-2018. Author ID: 759111



A. B. Danilova
National Medical Research Centre of Oncology named after N.N. Petrov, Ministry of Health of Russia
Russian Federation

68, Leningradskaya Str., 197758-St.-Petersburg, Russia

MD, PhD, Researcher of N.N. Petrov Research Institute of Oncology, Department of Oncoimmunology

Researcher ID (WOS): H-7828-2014. Author ID: 88221

 



I. A. Baldueva
National Medical Research Centre of Oncology named after N.N. Petrov, Ministry of Health of Russia
Russian Federation

68, Leningradskaya Str., 197758-St.-Petersburg, Russia

MD, DSc, Head of Oncoimmunology Department, Leading Researcher of N.N. Petrov Research Institute of Oncology, Department of Oncoimmunology

Researcher ID: H-9574-2014. Author ID: 268126



References

1. Hargadon K.M., Bishop J.D., Brandt J.P., Hand Z.C., Ararso Y.T., Forrest O.A. Melanoma-derived factors alter the maturation and activation of differentiated tissue- resident dendritic cells. Immunol Cell Biol. 2016 Jan; 94(1): 24–38. doi: 10.1038/icb.2015.58.

2. Saenz R., Souza Cda S., Huang C.T., Larsson M., Esener S., Messmer D. HMGB1- derived peptide acts as adjuvant inducing immune responses to peptide and protein antigen. Vaccine. 2010 Nov 3; 28(47): 7556–62. doi: 10.1016/j.vaccine.2010.08.054.

3. Shurin M.R., Shurin G.V., Lokshin A., Yurkovetsky Z.R., Gutkin D.W., Chatta G., Zhong H., Han B., Ferris R.L. Intratumoral cytokines/chemokines/ growth factors and tumor infiltrating dendritic cells: friends or enemies? Cancer Metastasis Rev. 2006 Sep; 25(3): 333–56. doi: 10.1007/s10555-006-9010-6.

4. Ma Y., Shurin G.V., Peiyuan Z., Shurin M.R. Dendritic cells in the cancer microenvironment. J Cancer. 2013; 4(1): 36–44. doi: 10.7150/jca.5046.

5. Manicassamy S., Pulendran B. Dendritic cell control of tolerogenic responses. Immunol Rev. 2011 May; 241(1): 206–27. doi: 10.1111/j.1600-065X.2011.01015.x.

6. Shurin G.V., Ma Y., Shurin M.R. Immunosuppressive mechanisms of regulatory dendritic cells in cancer. Cancer Microenviron. 2013 Aug; 6(2): 159–67. doi: 10.1007/s12307-013-0133-3.

7. Hu Z. Q., Xue H., Long J. H., Wang Y., Jia Y., Qiu W., Zeng Z. Biophysical properties and motility of human mature dendritic cells deteriorated by vascular endothelial growth factor through cytoskeleton remodelling. Int J Mol Sci. 2016 Nov; 17(11): 1756. doi: 10.3390/ijms17111756.

8. Zong J., Keskinov A.A., Shurin G.V., Shurin M.R. Tumor-derived factors modulating dendritic cell function. Cancer Immunol Immunother. 2016 Jul; 65(7): 821–33. doi: 10.1007/s00262-016-1820-y.

9. Shurin M.R., Naiditch H., Zhong H., Shurin G.V. Regulatory dendritic cells: new targets for cancer immunotherapy. Cancer Biol Ther 2011; 11(11): 988–992.

10. Tang M., Diao J., Cattral M.S. Molecular mechanisms involved in dendritic cell dysfunction in cancer. Cell Mol Life Sci. 2017 Mar; 74(5): 761–776. doi: 10.1007/s00018-016-2317-8.

11. Xu X., Liu X., Long J., Hu Z., Zheng Q., Zhang C., Li L., Wang Y., Jia Y., Qiu W., Zhou J., Yao W., Zeng Z. Interleukin-10 reorganizes the cytoskeleton of mature dendritic cells leading to their impaired biophysical properties and motilities. PLoS One. 2017 Feb 24; 12(2): e0172523. doi: 10.1371/journal.pone.0172523.

12. Nehaeva T.L. Autologous Dendritic Cell Vaccine Optimization for Therapy of Patients with Disseminated Malignant Ne. Siberian journal of oncology. 2013; 3: 52–56.

13. Freshney R.I. Culture of animal cells: A manual of basic technique. N.-Y.-Chichester: Wiley&Sons, 2000. 553.

14. Lang Т.А., Cesic M. How to describe statistics in medicine. American College of Physicians. 2006. 490.

15. Verglia F., Gabrilovich D. Dendritic cells in cancer: the role revisited. Curr Opin Immunol. 2017 Apr; 45: 43‑51. doi: 10.1016/j.coi.2017.01.002.

16. Harimoto H., Shimizu M., Nakagawa Y., Nakatsuka K., Wakabayashi A., Sakamoto C., Takahashi H. Inactivation of tumor-specific CD8(+) CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol. 2013 Oct; 91(9): 545‑55. doi: 10.1038/icb.2013.38.

17. Watkins SK, Zhu Z, Riboldi E et al. FOXO3 programs tumorassociated DCs to become tolerogenic in human and murine prostate cancer. Clin Hemorheol Microcirc. 2010; 46(4): 265–73. doi: 10.3233/CH-2010-1334.

18. Krempski J., Karyampudi L., Behrens M.D., Erskine C.L., Hartmann L., Dong H., Goode E.L., Kalli K.R., Knutson K.L. Tumor-infiltrating programmed death receptor-1+ dendritic cells mediate immune suppression in ovarian cancer. J Immunol. 2011 Jun 15; 186(12): 6905–13. doi: 10.4049/jimmunol.1100274.

19. Nguyen V.A., Ebner S., Fürhapter C., Romani N., Kölle D., Fritsch P., Sepp N. Adhesion of dendritic cells derived from CD34+ progenitors to resting human dermal microvascular endothelial cells is down-regulated upon maturation and partially depends on CD11a-CD18, CD11b-CD18 and CD36. Eur J Immunol. 2002 Dec; 32(12): 3638–50. doi: 10.1002/1521-4141(200212)32:12<3638::AIDIMMU3638>3.0.CO;2-C.

20. van Helden S.F., Krooshoop D.J., Broers K.C., Raymakers R.A., Figdor C.G., van Leeuwen F.N. A critical role for prostaglandin E2 in podosome dissolution and induction of high-speed migration during dendritic cell maturation. J Immunol 2006; 177(3): 1567–1574.

21. Michielsen A.J., Hogan A.E., Marry J., Tosetto M., Cox F., Hyland J.M., Sheahan K.D., O’Donoghue D.P., Mulcahy H.E., Ryan E.J., O’Sullivan J.N. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS One. 2011; 6(11): e27944. doi: 10.1371/journal.pone.0027944.

22. Wang X., Chen D., Zhang X., Jia B., Xie L., Sun D., Ka W., Yao W., Wen Z.Y. Biorheological changes of dendritic cells at the different differentiation stages. Clin Hemorheol Microcirc. 2010; 46(4): 265–273.

23. Zeng Z., Liu X., Jiang Y., Wang G., Zhan J., Guo J., Yao W., Sun D., Ka W., Tang Y., Tang J., Wen Z., Chien S. Biophysical studies on the differentiation of human CD14+ monocytes into dendritic cells. Cell Biochem Biophys 2006; 45(1): 19–30. doi: 10.1385/CBB:45:1:19.

24. Spary L.K., Salimu J., Webber J.P., Clayton A., Mason M.D., Tabi Z. Tumor stroma- derived factors skew monocyte to dendritic cell differentiation toward a suppressive CD14+ PD-L1+ phenotype in prostate cancer. Oncoimmunology. 2014 Dec 13; 3(9): e955331. doi: 10.4161/21624011.2014.955331.

25. Heuzé M.L., Vargas P., Chabaud M., Le Berre M., Liu Y.J., Collin O., Solanes P., Voituriez R., Piel M., Lennon-Duménil A.M. Migration of dendritic cells: physical principles, molecular mechanisms, and functional implications. Immunol Rev. 2013 Nov; 256(1): 240–54. doi: 10.1111/imr.12108.

26. Xie H., Pallero M.A., Gupta K., Chang P., Ware M.F., Witke W., Kwiatkowski D.J., Lauffenburger D.A., Murphy-Ullrich J.E., Wells A. EGF receptor regulation of cell motility: EGF induces disassembly of focal adhesions independently of the motility- associated PLCg signaling pathway. J Cell Science 1998; 111: 615–624.

27. Hübel J., Hieronymus T. HGF/Met-signaling contributes to immune regulation by modulating tolerogenic and motogenic properties of dendritic cells. Biomedicines. 2015 Mar 3; 3(1): 138–148. doi: 10.3390/biomedicines3010138.

28. Baek J.H., Birchmeier C., Zenke M., Hieronymus T. The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity. J Immunol. 2012 Aug 15; 189(4): 1699–707. doi: 10.4049/jimmunol.1200729.

29. Prendergast G.C., Jaffee E.M. Cancer immunotherapy. Immune suppression and tumor growth. San Diego: Academic Press Elsevier. 2013. 635.

30. De Vries I.J., Krooshoop D.J., Scharenborg N.M., Lesterhuis W.J., Diepstra J.H., Van Muijen G.N., Strijk S.P., Ruers T.J., Boerman O.C., Oyen W.J., Adema G.J., Punt C.J., Figdor C.G. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 2003; 63(1): 12–17.


Review

For citations:


Nekhaeva T.L., Danilova A.B., Baldueva I.A. STUDY OF DENDRITIC CELL MIGRATION USING CELL-IQ ANALYSIS SYSTEM. Siberian journal of oncology. 2018;17(4):14-23. https://doi.org/10.21294/1814-4861-2018-17-4-14-23

Views: 969


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)