REQUIREMENTS FOR EFFICIENT PCR CLAMPING BY LOCKED NUCLEIC ACID OLIGONUCLEOTIES FOR SIMPLE AND SENSITIVE DETECTION OF SOMATIC MUTATIONS
https://doi.org/10.21294/1814-4861-2018-17-4-30-35
Abstract
PCR clamping/wild-type blocking PCR with non-extendable locked nucleic acid (LNA) oligonucleotides is used for sensitive detection of somatic mutations in tumors. Various versions of the technique use different DNA polymerases and LNA oligonucleotides with and without additional phosphorothioate modifications. Here we studied requirements for successful PCR clamping with LNA oligonucleotides and Taq DNA polymerase for analysis of mutations in KRAS and BRAF genes by means of real-time PCR and Sanger sequencing. We found that addition of phosphorothioate linkages at the 5’-end of LNA oligonucleotide to protect from 5’- exonuclease activity of Taq DNA polymerase did not improve clamping. For most target sequences, efficient clamping was observed at melting temperature of LNA oligonucleotide 20‑25°C above annealing/extension temperature of the PCR with a 2-step protocol. Under such conditions, simple and sensitive detection of mutations in KRAS and BRAF genes was feasible using real-time PCR with TaqMan probes or Sanger sequencing.
About the Authors
V. A. ShamaninRussian Federation
2, Timakova Street, 630117-Novosibirsk, Russia
2, Timakova Street, 630117-Novosibirsk, Russia
PhD, Senior Researcher, Federal Research Center of Fundamental and Translational Medicine
I. V. Karpov
Russian Federation
2, Timakova Street, 630117-Novosibirsk, Russia
2, Timakova Street, 630117-Novosibirsk, Russia
laboratory assistant, Federal Research Center of Fundamental and Translational Medicine
E. E. Pisareva
Russian Federation
2, Timakova Street, 630117-Novosibirsk, Russia
PhD, Senior Researcher, Federal Research Center of Fundamental and Translational Medicine
N. I. Gutkina
Russian Federation
2, Timakova Street, 630117-Novosibirsk, Russia
PhD, Senior Researcher, Federal Research Center of Fundamental and Translational Medicine
S. P. Kovalenko
Russian Federation
2, Timakova Street, 630117-Novosibirsk, Russia
2, Timakova Street, 630117-Novosibirsk, Russia
DSc, Head of Laboratory, Federal Research Center of Fundamental and Translational Medicine
References
1. Dominguez P.L., Kolodney M.S. Wild-type blocking polymerase chain reaction for detection of single nucleotide minority mutations from clinical specimens. Oncogene. 2005 Oct 13; 24(45): 6830–4. doi: 10.1038/sj.onc.1208832.
2. Sidon P., Heimann P., Lambert F., Dessars B., Robin V., El Housni H. Combined locked nucleic acid and molecular beacon technologies for sensitive detection of the JAK2V617F somatic single-base sequence variant. Clin Chem. 2006; 52(7): 1436– 1438. doi: 10.1373/clinchem.2006.066886.
3. Thiede C., Creutzig E., Illmer T., Schaich M., Heise V., Ehninger G., Landt O. Rapid and sensitive typing of NPM1 mutations using LNAmediated PCR clamping. Leukemia. 2006; 20(10): 1897–1899. doi: 10.1038/sj.leu.2404367.
4. Arcila M., Lau C., Nafa K., Ladanyi M. Detection of KRAS and BRAF mutations in colorectal carcinoma roles for high-sensitivity locked nucleic acid-PCR sequencing and broad-spectrum mass spectrometry genotyping. J Mol Diagn. 2011 Jan; 13(1): 64–73. doi: 10.1016/j.jmoldx.2010.11.005.
5. Koshkin A.A., Singh S.K., Nielsen P., Rajwanshi V.K., Kumar R., Meldgaard M., Wengel J. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5- methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron. 1998; 54(14): 3607–3630.
6. You Y., Moreira B.G., Behlke M.A., Owczarzy R. Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res. 2006; 34(8): e60. doi: 10.1093/nar/gkl175.
7. Owczarzy R., You Y., Groth C.L., Tataurov A.V. Stability and mismatch discrimination of locked nucleic acid-DNA duplexes. Biochemistry. 2011; 50(43): 9352–9367. doi: 10.1021/bi200904e.
8. Yu D., Mukai M., Liu Q., Steinman C.R. Specific inhibition of PCR by non-extendable oligonucleotides using a 5’ to 3’ exonuclease-deficient DNA polymerase. Biotechniques. 1997; 23(4): 714–716, 718–720.
9. Laughlin T.S., Becker M.W., Liesveld J.L., Mulford D.A., Abboud C.N., Brown P., Rothberg P.G. Rapid method for detection of mutations in the nucleophosmin gene in acute myeloid leukemia. J Mol Diagn. 2008 Jul; 10(4): 338–45. doi: 10.2353/jmoldx.2008.070175.
10. Laughlin T.S., Moliterno A.R., Stein B.L., Rothberg P.G. Detection of exon 12 Mutations in the JAK2 gene: enhanced analytical sensitivity using clamped PCR and nucleotide sequencing. J Mol Diagn. 2010 May; 12(3): 278–82. doi: 10.2353/jmoldx.2010.090177.
11. Huang Q., Wang G.Y., Huang J.F., Zhang B., Fu W.L. High sensitive mutation analysis on KRAS gene using LNA/DNA chimeras as PCR amplification blockers of wild-type alleles. Mol Cell Probes. 2010; 24(6): 376–380. doi: 10.1016/j.mcp.2010.07.010.
12. Exiqon [Internet]. URL: https://www.exiqon.com/oligo-tools (cited 25 June 2018).
13. Nafa K., Hameed M., Arcila M.E. Locked Nucleic Acid Probes (LNA) for Enhanced Detection of Low-Level, Clinically Significant Mutations. Methods Mol Biol. 2016; 1392: 71–82. doi: 10.1007/978-1-4939-3360-0_8.
14. Pavlov A.R., Pavlova N.V., Kozyavkin S.A., Slesarev A.I. Cooperation between catalytic and DNA binding domains enhances thermostability and supports DNA synthesis at higher temperatures by thermostable DNA polymerases. Biochemistry. 2012 Mar 13; 51(10): 2032–43. doi: 10.1021/bi2014807.
15. OligoAnalyzer 3.1. [Internet]. URL: http://eu.idtdna.com/calc/analyzer. (cited 25 June 2018).
16. Stadler J., Eder J., Pratscher B., Brandt S., Schneller D., Müllegger R., Vogl C., Trautinger F., Brem G., Burgstaller J.P. SNPase-ARMS qPCR: Ultrasensitive Mutation- Based Detection of Cell-Free Tumor DNA in Melanoma Patients. PLoS One. 2015 Nov 12; 10(11): e0142273. doi: 10.1371/journal.pone.0142273.
Review
For citations:
Shamanin V.A., Karpov I.V., Pisareva E.E., Gutkina N.I., Kovalenko S.P. REQUIREMENTS FOR EFFICIENT PCR CLAMPING BY LOCKED NUCLEIC ACID OLIGONUCLEOTIES FOR SIMPLE AND SENSITIVE DETECTION OF SOMATIC MUTATIONS. Siberian journal of oncology. 2018;17(4):30-35. https://doi.org/10.21294/1814-4861-2018-17-4-30-35