TRANSCRIPTOMIC ANALYSIS OF MELANOMA CELLS EXTRACTED FROM DIFFERENT SITES OF THE PRIMARY TUMOR
https://doi.org/10.21294/1814-4861-2018-17-4-59-66
Abstract
Introduction. Intratumor heterogeneity is a characteristic feature for most malignant tumors, including cutaneous melanoma. This property represents one of the main obstacles for effective targeted therapy, due to the different sensitivity to chemotherapeutic agents on various tumor cells subclones. Treatment of malignant tumors requires an individual approach to choose the most appropriate treatment regimen.
The purpose of the study was to evaluate differences in melanoma tissue samples obtained from different parts of one patient’s primary tumor at the transcriptomic level.
Material and Methods. Melanoma cell cultures obtained from both central and peripheral parts of the primary tumor of two patients were used in the study.
Results. Subclones from different parts of the first patient’s tumor were similar, whereas the second patient demonstrated significant differences at the transcriptomic level (in 2953 transcripts out of 48226). In the cells of the central zone of the second patient’s tumor, an increase in mRNA of the genes encoding proteins associated with tumor-specific immune response, as well as ABC-family transport proteins and cytokine signaling molecules, were noted. In the cells from the peripheral area of the same tumor, a more intensive transcription of genes encoding extracellular matrix and inflammatory response proteins was observed. Taken all round, the differences between the subclones of the second patient’s cells were relevant to some signaling cascades playing a leading role in oncogenesis (MAPK, PI3K-Akt-mTOR, VEGFA-VEGFR2, etc.).
Conclusion. The study allowed evaluation of differences between cancer cells within a tumor at the transcriptional level in order to search for further approaches to personalized melanoma therapy.
About the Authors
M. B. AksenenkoRussian Federation
1, P. Zheleznyaka Street, 660022-Krasnoyarsk, Russia
MD, PhD, Associate Professor of the Department of Pathophysiology, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University the Ministry of Health Care of the Russian Federation
Researcher ID (WOS): V-1055-2017. Author ID (Scopus): 55330015100
A. V. Komina
Russian Federation
1, P. Zheleznyaka Street, 660022-Krasnoyarsk, Russia
PhD, research scientist of the Department of Pathophysiology, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, the Ministry of Health Care of the Russian Federation
Researcher ID (WOS): O-9770-2015. Author ID (Scopus): 55596122500
N. V. Palkina
Russian Federation
1, P. Zheleznyaka Street, 660022-Krasnoyarsk, Russia
MD, PhD, Department of Pathophysiology, V.F. Voino- Yasenetsky Krasnoyarsk State Medical University, the Ministry of Health Care of the Russian Federation
Researcher ID (WOS): P-1585-2015. Author ID (Scopus): 56126629300
A. S. Averchuk
Russian Federation
1, P. Zheleznyaka Street, 660022-Krasnoyarsk, Russia
PhD, Associate Professor of the Department of Pathophysiology, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health Care of the Russian Federation
Researcher ID (WOS): I-1075-2018
Yu. A. Rybnikov
Russian Federation
16, 1st Smolenskaya Street, 660133-Krasnoyarsk, Russia
MD, Head of the Department of General Oncosurgery, oncologist, A.I. Kryzhanovsky Krasnoyarsk Region Clinical
Oncology Center
Researcher ID (WOS): I-8802-2018. Author ID (Scopus): 983050
Yu. A. Dyhno
Russian Federation
1, P. Zheleznyaka Street, 660022-Krasnoyarsk, Russia
MD, DSc, Professor of the Department of Oncology and Radiation Therapy with a postgraduate training course, V.F.
Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health Care of the Russian Federation
Researcher ID (WOS): I-8813-2018. Author ID (Scopus): 108203
T. G. Ruksha
Russian Federation
1, P. Zheleznyaka Street, 660022-Krasnoyarsk, Russia
MD, DSc, Head of the Department of Pathophysiology, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University of the Ministry of Health Care of the Russian Federation
Researcher ID (WOS): A-4801-2014. Author ID (Scopus): 23009925600
References
1. Hunter K.W., Amin R., Deasy S., Ha N.H., Wakefield L. Genetic insights into the morass of metastatic heterogeneity. Nat Rev Cancer. 2018 Apr; 18(4): 211–23. doi: 10.1038/nrc.2017.126.
2. Gerlinger M., Swanton C. How Darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine. Br J Cancer. 2010 Oct 12; 103(8): 1139–43. doi: 10.1038/sj.bjc.6605912.
3. Housman G., Byler S., Heerboth S., Lapinska K., Longacre M., Snyder N., Sarkar S. Drug resistance in cancer: an overview. Cancers (Basel). 2014 Sep 5; 6(3): 1769–92. doi: 10.3390/cancers6031769.
4. Dagogo-Jack I., Shaw A.T. Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 2018 Feb; 15(2): 81–94. doi: 10.1038/nrclinonc.2017.166.
5. Neve R.M., Chin K., Fridlyand J., Yeh J., Baehner F.L., Fevr T., Clark L., Bayani N., Coppe J.P., Tong F., Speed T., Spellman P.T., DeVries S., Lapuk A., Wang N.J., Kuo W.L., Stilwell J.L., Pinkel D., Albertson D.G., Waldman F.M., McCormick F., Dickson R.B., Johnson M.D., Lippman M., Ethier S., Gazdar A., Gray J.W. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006 Dec; 10(6): 515–27. doi: 10.1016/j.ccr.2006.10.008.
6. Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995; 57: 289–300.
7. Sanlorenzo M., Vujic I., Posch C., Dajee A., Yen A., Kim S., Ashworth M., Rosenblum M.D., Algazi A., Osella-Abate S., Quaglino P., Daud A., Ortiz-Urda S. Melanoma immunotherapy. Cancer Biol Ther. 2014 Jun 1; 15(6): 665–74. doi: 10.4161/cbt.28555.
8. Somasundaram R., Villanueva J., Herlyn M. Intratumoral heterogeneity as a therapy resistance mechanism: role of melanoma subpopulations. Adv Pharmacol. 2012; 65: 335–59. doi: 10.1016/B978-0-12-397927-8.00011-7.
9. Pieniazek M., Matkowski R., Donizy P. Macrophages in skin melanoma-the key element in melanomagenesis. Oncol Lett. 2018 Apr; 15(4): 5399–5404. doi: 10.3892/ol.2018.8021.
10. Smith M.J., Culhane A.C., Donovan M., Coffey J.C., Barry B.D., Kelly M.A., Higgins D.G., Wang J.H., Kirwan W.O., Cotter T.G., Redmond H.P. Analysis of differential gene expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification. Br J Cancer. 2009 May; 100(9): 1452–64. doi: 10.1038/sj.bjc.660493.
11. Kovacs D., Migiliano E., Muscardin L., Silipo V., Catricala C., Picardo M., Bellei B. The role of Wnt/ß-catenin signaling pathway in melanoma epithelial-to-esenchymal- like switching: evidences from patients-derived cell lines. Oncotarget. 2016 Jul 12; 7(28): 43295–43314. doi: 10.18632/oncotarget.9232.
12. Mikheev A.M., Mikheeva S.A., Rostomily R., Zarbl H. Dickkopf-1 activates cell death in MDA-MB435 melanoma cells. Biochem Biophys Res Commun. 2007 Jan 19; 352(3): 675-80. doi: 10.1016/j.bbrc.2006.11.079
13. Roesch A. Tumor heterogeneity and plasticity as elusive drivers for resistance to MAPK pathway inhibition in melanoma. Oncogene. 2015 Jun 4; 34(23): 2951–7. doi: 10.1038/onc.2014.249.
14. Chou J., Werb Z. MicroRNAs play a big role in regulating ovarian cancer-associated fibroblasts and the tumor microenvironment. Cancer Discov. 2012 Dec; 2(12): 1078–80. doi: 10.1158/2159-8290.CD-12-0465.
15. Ruffini F., Failla C.M., Orecchia A., Bani M.R., Dorio A.S., Fortes C., Zambruno G., Graziani G., Giavazzi R., D’Atri S., Lacal P.M. Expression of the soluble vascular endothelial growth factor receptor-1 in cutaneous melanoma: role in tumour progression. Br J Dermatol. 2011 May; 164(5): 1061–70. doi: 10.1111/j.1365-2133.2010.10200.x.
16. Wang T., Srivastava S., Hartman M., Buhari S.A., Chan C.W., Iau P., Khin L.W., Wong A., Tan S.H., Goh B.C., Lee S.C. High expression of intratumoral stromal proteins is associated with chemotherapy resistance in breast cancer. Oncotarget. 2016 Aug; 7(34): 55155–55168. doi: 10.18632/oncotarget.10894.
17. Markova-Car E.P., Jurišić D., Ilić N., Kraljević Pavelić S. Running for time: circadian rhythms and melanoma. Tumour Biol. 2014 Sep; 35(9): 8359–68. doi: 10.1007/s13277-014-1904-2.
18. Fischer T.W., Zmijewski M.A., Zbytek B., Sweatman T.W., Slominski R.M., Wortsman J., Slominski A. Oncostatic effects of the indole melatonin and expression of its cytosolic and nuclear receptors in cultured human melanoma cell lines. Int J Oncol. 2006 Sep; 29(3): 665–72.
19. Slominski A.T., Brożyna A.A., Zmijewski M.A., Jóźwicki W., Jetten A.M., Mason R.S., Tuckey R.C., Elmets C.A. Vitamin D signaling and melanoma: role of vitamin D and its receptors in melanoma progression and management. Lab Invest. 2017 Jun; 97(6):706–24. doi: 10.1038/labinvest.2017.3.
Review
For citations:
Aksenenko M.B., Komina A.V., Palkina N.V., Averchuk A.S., Rybnikov Yu.A., Dyhno Yu.A., Ruksha T.G. TRANSCRIPTOMIC ANALYSIS OF MELANOMA CELLS EXTRACTED FROM DIFFERENT SITES OF THE PRIMARY TUMOR. Siberian journal of oncology. 2018;17(4):59-66. https://doi.org/10.21294/1814-4861-2018-17-4-59-66