Preview

Siberian journal of oncology

Advanced search

IMPACT OF TRANSCRIPTION FACTORS, VEGF AND PROTEASES ON KIDNEY CANCER PROGRESSION

https://doi.org/10.21294/1814-4861-2018-17-4-67-74

Abstract

Introduction. The efficacy of anticancer treatment depends on biological factors of tumor.

The aim of the study was to determine the activity of proteasomes and calpains and to  reveal their association with VEGF, HIF-1α and NF-κΒ expressions in normal, primary and metastatic renal cell carcinoma (RCC) tissues.

Methods. Ninety-three patients with renal cell carcinoma were included into the study. The expression levels of transcription factor and VEGF were measured using ELISA kits. The  levels of proteasome subunits were measured by Western Blotting. Proteasome and calpain  activities were determined using specific fluorogenic  substrates.

Results. We revealed inactivation of proteolysis in patients with kidney cancer. Disease advance was associated with a significant depression of cellular proteolysis and increase in  transcription and growth factor levels in primary kidney cancer tissues. The proteolysis  activation was found in metastatic tissues.

Conclusions. Our results suggest that NF-κΒ, HIF-1α and VEGF transcription factors and intracellular proteolytic systems are involved in kidney cancer progression.

About the Authors

L. V. Spirina
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences Siberian State Medical University
Russian Federation

5, Kooperativny street, 634009-Tomsk, Russia

2, Moskovsky trakt, 634050-Tomsk, Russia

MD, DSc, Senior Researcher of Laboratory of Tumor Biology, Cancer Research Institute, Tomsk National Research Medical  Center, Russian Academy of Sciences; Professor, Siberian  State Medical university

ResearcherID (WOS): A-7760-2012. AuthorsID (Scopus): 36960462500



I. V. Kondakova
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

5, Kooperativny street, 634009-Tomsk, Russia

MD, DSc, Professor, Head of Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National
Research Medical Center, Russian Academy of Sciences 

AuthorsID (Scopus): 6701872510. ResearcherID (WOS): C-8658-2012.



E. A. Usynin
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

5, Kooperativny street, 634009-Tomsk, Russia

MD, DSc, Senior Researcher, Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

Author ID (Scopus): 56204320500



E. M. Slonimskaya
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences Siberian State Medical University
Russian Federation

5, Kooperativny street, 634009-Tomsk, Russia

2, Moskovsky trakt, 634050-Tomsk, Russia

MD, DSc, Professor, Head of General Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences

AuthorsID (Scopus): 6603658443. ResearcherID (WOS): C-7405-2012



Z. A. Yurmazov
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

5, Kooperativny street, 634009-Tomsk, Russia

MD, DSc, physician, Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences



References

1. Keefe S.M., Nathanson K.L., Rathmell W.K. The molecular biology of renal cell carcinoma. Semin Oncol. 2013 Aug; 40(4): 421‑8. doi: 10.1053/j.seminoncol.2013.05.006.

2. Hartmann A., Schlomm T., Bertz S., Heinzelmann J., Hölters S., Simon R., Stoehr R., Junker K. Prognostic and predictive molecular markers for urologic cancers. Urologe A. 2014 Apr; 53(4): 491‑500. doi: 10.1007/s00120-014-3442-3.

3. Na X., Wu G., Ryan C.K., Schoen S.R., di’Santagnese P.A., Messing E.M. Overproduction of vascular endothelial growth factor related to von Hippel-Lindau tumor suppressor gene mutations and hypoxia-inducible factor-1 alpha expression in renal cell carcinomas. J Urol. 2003 Aug; 170(2 Pt 1): 588‑92. doi: 10.1097/01.ju.0000074870.54671.98.

4. Hoffmann A., Baltimore D. Circuitry of nuclear factor kappaB signaling. Immunol Rev. 2006; 210: 171–186. doi: 10.1111/j.0105-2896.2006.00375.x.

5. Zhou J., Köhl R., Herr B., Frank R., Brüne B. Calpain mediates a von Hippel-Lindau protein-independent destruction of hypoxia-inducible factor-1alpha. Mol Biol Cell. 2006 Apr; 17(4): 1549‑58. doi: 10.1091/mbc.E05-08-0770.

6. Klatte T., Seligson D.B., Riggs S.B., Leppert J.T., Berkman M.K., Kleid M.D., Yu H., Kabbinavar F.F., Pantuck A.J., Belldegrun A.S. Hypoxiainducible factor 1 alpha in clear cell renal cell carcinoma. Clin Cancer Res. 2007; 13(24): 7388‑93. doi: 10.1158/1078- 0432.CCR-07-0411.

7. Baldwin A.S. The NF-κΒ and I-κΒ proteins: new discoveries and insights. Annu Rev Immunol. 1996; 14: 649–683. doi: 10.1146/annurev.immunol.14.1.649.

8. Goldberg A.L. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochemical Society Transactions. 2007; 35: 12–17. doi: 10.1042/BST0350012.

9. Kostadinova R.M., Nawrocki A.R., Frey F.J. Tumor necrosis factor α and phorbol 12- myristate-13-acetate down-regulate human 11betahydroxysteroid dehydrogenase type 2 through p50/p50 NF-κΒ homodimers and Egr-1. FASEB J. 2005; 19(6): 650–2. doi: 10.1096/fj.04-2820fje.

10. Marui N., Medford R.M., Ahmad M. Activation of RelA homodimers by tumor necrosis factor α: a possible transcriptional activator in human vascular endothelial cells. Biochem J. 2005; 390: 317–24. doi: 10.1042/BJ20041659.

11. Juvekar A., Manna S., Ramaswami S., Chang T.P., Vu H.Y., Ghosh C.C., Celiker M.Y., Vancurova I. Bortezomib induces nuclear translocation of IκBα resulting in gene- specific suppression of NF-κB--dependent transcription and induction of apoptosis in CTCL. Mol Cancer Res. 2011 Feb; 9(2): 183‑94. doi: 10.1158/1541-7786.MCR-10-0368.

12. Conner J.R., Smirnova I.I., Moseman A.P., Poltorak A. IRAK1BP1 inhibits inflammation by promoting nuclear translocation of NF-kappaB p50. Proc Natl Acad Sci U S A. 2010 Jun 22; 107(25): 11477‑82. doi: 10.1073/pnas.1006894107.

13. van Uden P., Kenneth N.S., Rocha S. Regulation of hypoxiainducible factor-1α by NF-κΒ. Biochem J. 2008 Jun 15; 412(3): 477‑84. doi: 10.1042/BJ20080476.

14. Reeg S., Jung T., Castro J.P., Davies K.J.A., Henze A., Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damagedproteins by the proteasome. Free Radic Biol Med. 2016; 99: 153‑166. doi: 10.1016/j.freeradbiomed.2016.08.002.

15. Sorokin A.V., Kim E.R., Ovchinnikov L.P. Proteasome system of protein degradation and processing. Biochemistry (Mosc). 2009 Dec; 74(13): 1411‑42.

16. Almond J.B., Cohen G.M. The proteasome: a novel target for cancer chemotherapy. Leukemia. 2002; 16(4): 433–43. doi: 10.1038/sj.leu.2402417.

17. Chen C., Seth A.K., Aplin A.E. Genetic and expression aberrations of E3 ubiquitin ligases in human breast cancer. Mol Cancer Res. 2006; 4: 695–707.

18. Kondakova I.V., Spirina L.V., Koval V.D., Shashova E.E., Choinzonov E.L., Ivanova E.V., Kolomiets L.A., Chernyshova A.L., Slonimskaya E.M., Usynin E.A., Afanasyev S.G. Chymotripsin-like activity and subunit composition of proteasomes in human cancers. Mol Biol (Mosk). 2014 May-Jun; 48(3): 444‑51.

19. Voutsadakis I.A. Pathogenesis of colorectal carcinoma and therapeutic implications: the role of the ubiquitin-proteasome system and Cox-2. J Cell Mol Med. 2007; 11(2): 252–337. doi: 10.1111/j.1582-4934.2007.00032.x.

20. Goll D.E., Thompson V.F., Li H., Wei W., Cong J. The calpain system. Physiol Rev. 2003; 83(3): 731‑801. doi: 10.1152/physrev.00029.2002.

21. Ivanova E.V., Kondakova I.V., Spirina L.V., Afanas’ev S.G., Avgustinovich A.V., Cheremisina O.V. Chymotrypsin-like activity of proteasomes and total calpain activity in gastric and colorectal cancer. Bull Exp Biol Med. 2014 Oct; 157(6): 7814. doi: 10.1007/s10517-014-2666-y.

22. Spirina L.V., Usynin Y.A., Kondakova I.V., Yurmazov Z.A., Slonimskaya E.M., Kolegova E.S. The AKT-mTOR Signalling Pathway in Kidney Cancer Tissues. AIP Conf Proc. 2015; 1688: 080004-1–5. doi: 10.1063/1.4936067.

23. Storr S.J., Carragher N.O., Frame M.C., Parr T., Martin S.G. The calpain system and cancer. Nat Rev Cancer. 2011 May; 11(5): 364‑74. doi: 10.1038/nrc3050.

24. Sorimachi H., Hata S., Ono Y. Calpain chronicle an enzyme family under multidisciplinary characterization. Proc Jpn Acad Ser B Phys Biol Sci. 2011; 87: 287–327.

25. Smith I.J., Dodd S.L. Calpain activation causes a proteasome dependent increase in protein degradation and inhibits the Akt signaling pathway in rat diaphragm muscle. Exp Physiol. 2007; 92(3): 561–73. doi: 10.1113/expphysiol.2006.035790.

26. Molitoris K.H., Kazi A.A., Koos R.D. Inhibition of oxygen-induced hypoxia-inducible factor-1α degradation unmasks estradiol induction of vascular endothelial growth factor expression in ECC-1 cancer cells in vitro. Endocrinology. 2009 Dec; 150(12): 5405‑14. doi: 10.1210/en.2009-0884.

27. Yue C.X., Ma J., Zhou H.J., Tang Q.L., Li L.L., Bi F., Xue Y. The effect of RhoA and proteasome inhibitor MG132 on angiogenesis in tumors. Sichuan Da Xue Xue Bao Yi Xue Ban. 2011 Jul; 42(4): 445‑50.

28. Li C., Chen S., Yue P., Deng X., Lonial S., Khuri F.R., Sun S.Y. Proteasome inhibitor PS-341 (bortezomib) induces calpain-dependent IkappaB(alpha) degradation. J Biol Chem. 2010 May 21; 285(21): 16096‑104. doi: 10.1074/jbc.M109.072694.

29. Moorthy A.K., Savinova O.V., Ho J.Q., Wang V.Y., Vu D., Ghosh G. The 20S proteasome processes NF-kappaB1 p105 into p50 in a translationindependent manner. EMBO J. 2006 May 3; 25(9): 1945‑56. doi: 10.1038/sj.emboj.7601081.

30. Abramova E.B., Astakhova T.M., Erokhov P.A., Sharova N.P. Multiple forms of the proteasomes and some approaches to their separation. Izv Akad Nauk Ser Biol. 2004; (2): 150‑6.

31. Ben-Shahar S., Komlosh A., Nadav E., Shaked I., Ziv T., Admon A., DeMartino G.N., Reiss Y. 26 S proteasome-mediated production of an authentic major histocompatibility class I-restricted epitope from an intact protein substrate. J Biol Chem. 1999; 274(31): 21963‑72.

32. Sandmann S., Prenzel F., Shaw L., Schauer R., Unger T. Activity profile of calpains I and II in chronically infarcted rat myocardium-- influence of the calpain inhibitor CAL 9961. Br J Pharmacol. 2002 Apr; 135(8): 1951‑8. doi: 10.1038/sj.bjp.0704661.

33. Laemmi U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.). 1970; 227: 680–5.

34. Arlt A., Bauer I., Schafmayer C., Tepel J., Müerköster S.S., Brosch M., Röder C., Kalthoff H., Hampe J., Moyer M.P., Fölsch U.R., Schäfer H. Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene. 2009 Nov 12; 28(45): 3983‑96. doi: 10.1038/onc.2009.264.

35. Shibata A., Nagaya T., Imai T., Funahashi H., Nakao A., Seo H. Inhibition of NF- kappaB activity decreases the VEGF mRNA expression in MDA-MB-231 breast cancer cells. Breast Cancer Res Treat. 2002; 73(3): 237‑43.


Review

For citations:


Spirina L.V., Kondakova I.V., Usynin E.A., Slonimskaya E.M., Yurmazov Z.A. IMPACT OF TRANSCRIPTION FACTORS, VEGF AND PROTEASES ON KIDNEY CANCER PROGRESSION. Siberian journal of oncology. 2018;17(4):67-74. https://doi.org/10.21294/1814-4861-2018-17-4-67-74

Views: 975


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)