THE FIRST EXPERIENCE OF USING 99MTC-1-THIO-D-GLUCOSE FOR SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY IMAGING OF LYMPHOMAS
https://doi.org/10.21294/1814-4861-2018-17-4-81-87
Abstract
Introduction. The purpose of this study was to evaluate the feasibility of using 99mTc-TG SPECT in the detection and staging of malignant lymphoma.
Materials and methods. Fifteen patients with newly diagnosed malignant lymphoma underwent 99mTc-TG SPECT. Six patients had Hodgkin’s lymphoma and 9 patients had aggressive forms of non-Hodgkin’s lymphoma (NHL): diffuse large B-cell lymphoma (7 cases), B-cell follicular lymphoma (1 case), and lymphoma from B cells in the marginal zone (1 case). Stage IIA was diagnosed in 5 patients, stage IIB in 1, stage IIIA in 1, stage IVA in 4 and stage IVB in 4 patients.
Results. Pathological 99mTc-TG uptake in lymph nodes was observed in 14 (93 %) of the 15 patients. In one patient, the enlarged submandibular lymph node (16 mm in size) detected by CT was not visualized by 99mTc-TG SPECT. This false-negative result was likely to be associated with increased accumulation of 99mTc-TG in the oropharyngeal region. There were difficulties in the visualization of paratracheal, para-aortic and paracardial lymph nodes. These difficulties were associated with a high blood background activity, which persisted even 4 hours after intravenous injection of 99mTc-TG. Software-based SPECT and CT image fusion allowed visualization of these lymph nodes. The pathological 99mTc-TG accumulation in axillary, supraclavicular, infraclavicular and cervical lymph nodes was observed most often. Extranodal involvement was seen in 9 patients. 99mTc-TG SPECT identified extranodal hypermetabolic lesions in 7 (78 %) of these patients. In one patient, hypermetabolic lesion in the lung detected by 99mTc-TG SPECT was not detected on CT image. CT identified bone marrow involvement in the pelvic and scapula in 1 patient. The use of 99mTc-TG SPECT allowed the visualization of hypermetabolic bone tissue lesions in this patient (Figure 4). In addition, in a patient with intact bone tissue on CT, 99mTc-TG SPECT detected hypermetabolic lesions in the iliac bone.
Conclusion. 99mTc-1-Thio-D-glucose demonstrated increased uptake in nodal and extranodal sites of lymphoma. The results indicate that SPECT with 99mTc-1-Thio-D-glucose is a feasible and useful tool in the detection and staging malignant lymphoma.
About the Authors
V. I. ChernovRussian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
30, Lenina Avenue, 634050-Tomsk, Russia
MD, DSc, Professor, Head of the Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
Researcher ID (WOS): P-1470-2014. Author ID (Scopus): 7201429550
E. A. Dudnikova
Russian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
MD, Junior Researcher of the Chemotherapy Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
Researcher ID (WOS): C-8937-2012
R. V. Zelchan
Russian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
MD, PhD, radiologist of the Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
Researcher ID (WOS): C-8597-2012. Author ID (Scopus): 56901332100
T. L. Kravchuk
Russian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
MD, PhD, hematologist of the Chemotherapy Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
Researcher ID (WOS): J-2342-2017
A. V. Danilova
Russian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
MD, hematologist of the Chemotherapy Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
A. A. Medvedeva
Russian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
MD, PhD, Senior Researcher of the Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
Researcher ID (WOS): D-7455-2012. Author ID (Scopus): 57188995343
I. G. Sinilkin
Russian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
MD, PhD, Senior Researcher of the Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
Researcher ID (WOS): С-9282-2012. Author ID (Scopus): 6506263379
O. D. Bragina
Russian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
MD, PhD, Junior Researcher of the Nuclear Medicine Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
Researcher ID (WOS): E-9732-2017. Author ID (Scopus): 57190936256
V. E. Goldberg
Russian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
MD, DSc, Professor, Head of the Chemotherapy Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
Researcher ID (WOS): C-8911-2012. Author ID (Scopus): 54420064600
A. V. Goldberg
Russian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
MD, Junior Researcher of the Radiation Diagnostics Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
Researcher ID (WOS): J-6951-2017. Author ID (Scopus): 57195555542
I. G. Frolova
Russian Federation
5, Kooperativny Street, 634009-Tomsk, Russia
MD, DSc, Professor, Head of the Radiation Diagnostics Department, Cancer Research Institute, Tomsk National Research Medical Center Russian Academy of Sciences
Researcher ID (WOS): C-8212-2012. Author ID (Scopus): 7006413170
References
1. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные заболевания в России в 2014 году (заболеваемость и смертность). М.: ФГБУ «МНИОИ им. П.А. Герцена Минздравсоцразвития России». 2018. 250. [Kaprin A.D., Starinskii V.V., Petrova G.V. Cancer incidence and mortality in Russia in 2014 (zabolevaemost’ i smertnost’). M., 2018. 250. (in Russian)]
2. Рукавицын О.А. Гематология: национальное руководство. М.: ГЭОТАР-Медиа. 2015; 776. [Rukavitsyn O.A. Hematology: national guidelines. M.: GEOTAR-Media. 2015; 776. (in Russian)]
3. Armitage J.O. A clinical evaluation of the International Lymphoma Study Group classification of non-Hodgkin’s lymphoma. Blood. 1997; 89(11): 3909 3918.
4. Новиков С.Н., Гиршович М.М. Диагностика и стадирование лимфомы Ходжкина. Проблемы туберкулеза и болезней легких. 2007; 8(2): 65 72. [Novikov S.N., Girshovich M.M. Detection and staging of Hodking’s lymphoma.Problems of tuberculosis and pulmonary diseases. 2007; 8(2): 65 72. (in Russian)]
5. Kwee T.C., Kwee R.M., Nievelstein R.A. Imaging in staging of malignant lymphoma: a systematic review. Blood. 2008; 111: 504–16.
6. Pelosi E., Pregno P., Penna D., Deandreis D., Chiappella A., Limerutti G., Vitolo U., Mancini M., Bisi G., Gallo E. Role of whole-body [18F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) and conventional techniques in the staging of patients with Hodgkin and aggressive non Hodgkin lymphoma. Radiol Med. 2008 Jun; 113(4): 578 90. doi: 10.1007/s11547-008-0264-7.
7. Freudenberg L.S., Antoch G., Schütt P., Beyer T., Jentzen W., Müller S.P., Görges R., Nowrousian M.R., Bockisch A., Debatin J.F. FDGPET/CT in re-staging of patients with lymphoma. Eur J Nucl Med Mol Imaging. 2004 Mar; 31(3): 325 9.
8. Hutchings M., Loft A., Hansen M., Pedersen L.M., Berthelsen A.K., Keiding S., Specht L. Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica. 2006; 91: 482–9.
9. Elstrom R.L., Leonard J.P., Coleman M., Brown R.K.J. Combined PET and low-dose, noncontrast CT scanning obviates the need for additional diagnostic contrast-enhanced CT scans in patients undergoing staging or restaging for lymphoma. Ann Oncol. 2008; 19: 1770–3.
10. Cheson B.D. Role of functional imaging in the management of lymphoma. J Clin Oncol. 2011; 29: 1844–54.
11. Zeltchan R., Medvedeva A., Sinilkin I., Chernov V., Stasyuk E., Rogov A., Skuridin V. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose. AIP Publishing, 2016; 1760(1): 020072
12. Zeltchan R., Medvedeva A., Sinilkin I., Bragina O., Chernov V., Stasyuk E., Dergilev A. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis. IOP Conference Series: Materials Science and Engineering. 2016; 012054.
13. Зельчан Р.В., Медведева А.А., Синилкин И.Г., Брагина О.Д., Чернов В.И., Стасюк Е.С., Ильина Е.А., Скуридин В.С. Изучение функциональной пригодности туморотропного радиофармпрепарата 99мтс-1-ТИО-6-глюкоза в эксперименте. Молекулярная медицина. 2018; 16(3): 54 57. [Zelchan R.V., Medvedeva A.A., Sinilkin I.G., Bragina O.D., Chernov V.I., Stasyuk E.S., Ilyina E.A., Skuridin V.S. A study of the functional suitability of the tumor-neutral radiopharmaceutical 99mTc-1- TIO-D-glucose in the experiment. Molecular medicine. 2018; 16(3): 54 57. (in Russian)]
14. Чернов В.И., Медведева А.А., Синилкин И.Г., Зельчан Р.В., Брагина О.Д. Разработка радиофармпрепаратов для радионуклидной диагностики в онкологии. Медицинская визуализация. 2016; (2): 63 66. [Chernov V.I., Medvedeva A.A., Sinilkin I.G., Zel’chan R.V., Bragina O.D. Development Radiopharmaceuticals for Nuclear Medicine in Oncology. Medical Visualization 2016; (2): 63–66. (in Russian)]
15. Welling M.M., Alberto R. Performance of a 99mTc-labelled 1- thiobeta-D-glucose 2,3,4,6-tetra-acetate analogue in the detection of infections and tumours in mice: a comparison with [18F]FDG. Nucl Med Commun. 2010 Mar; 31(3): 239–48. doi: 10.1097/MNM.0b013e32833501e4.
16. Moog F., Kotzerke J., Reske S.N. FDG PET can replace bone scintigraphy in primary staging of malignant lymphoma. J Nucl Med. 1999; 40: 1407–13
17. Seidensticker M., Ulrich G., Muehlberg F.L., Pethe A., Grosser O.S., Steffen I.G., Stiebler M., Goldschmidt J., Smalla K.H., Seidensticker R., Ricke J., Amthauer H., Mohnike K. Tumor Cell Uptake of 99mTc-Labeled 1-Thio-β-DGlucose and 5-Thio-D- Glucose in Comparison with 2-Deoxy- 2-[18F]Fluoro-D-Glucose In Vitro P. Kinetics, Dependencies, Blockage and Cell Compartment of Accumulation. Mol Imaging Biol. 2014 Apr; 16(2): 189–98. doi: 10.1007/s11307-013-0690-3.
18. Ganapathy V., Thangaraju M., Prasad P.D. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009 Jan; 121(1): 29 40. doi: 10.1016/j.pharmthera.2008.09.005.
19. Ong L.C., Jin Y., Song I.C., Yu S., Zhang K., Chow P.K. 2-[18F]-2-deoxy-D-glucose (FDG) uptake in human tumor cells is related to the expression of GLUT-1 and hexokinase II. Acta Radiol. 2008 Dec; 49(10): 1145–53. doi: 10.1080/02841850802482486.
20. Yun H., Lee M., Kim S.S., Ha J. Glucose deprivation increases mRNA stability of vascular endothelial growth factor through activation of AMP-activated protein kinase in DU145 prostate carcinoma. J Biol Chem. 2005 Mar 18; 280(11): 9963–72.
21. Guo G.F., Cai Y.C., Zhang B., Xu R.H., Qiu H.J., Xia L.P., Jiang W.Q., Hu P.L., Chen X.X., Zhou F.F., Wang F. Overexpression of SGLT1 and EGFR in colorectal cancer
22. showing a correlation with the prognosis. Med Oncol. 2011 Dec; 28 Suppl 1: S197– 203. doi: 10.1007/s12032-010-9696-8.
23. Huber S.M., Misovic M., Mayer C., Rodemann H.P., Dittmann K. EGFR-mediated stimulation of sodium/glucose cotransport promotes survival of irradiated human. Radiother Oncol. 2012. 103(3): 373–379.
Review
For citations:
Chernov V.I., Dudnikova E.A., Zelchan R.V., Kravchuk T.L., Danilova A.V., Medvedeva A.A., Sinilkin I.G., Bragina O.D., Goldberg V.E., Goldberg A.V., Frolova I.G. THE FIRST EXPERIENCE OF USING 99MTC-1-THIO-D-GLUCOSE FOR SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY IMAGING OF LYMPHOMAS. Siberian journal of oncology. 2018;17(4):81-87. https://doi.org/10.21294/1814-4861-2018-17-4-81-87