Preview

Siberian journal of oncology

Advanced search

HEREDITARY BREAST CANCER

Abstract

Hereditary breast cancer occurs in 5–20 % of cases and it is associated with inherited mutations in particular genes, such as BRCA1 и BRCA2 in most cases. The CHEK2, PTEN, TP53, ATM, RAD51, BLM, PALB2, Nbs genes are associated with low and median risks of
developing breast cancer. Molecular genetic studies identify germinal mutations underlying hereditary breast cancer. In most cases hereditary breast cancer refers to triple-negative phenotype, which is the most aggressive type of breast cancer, that does not express the genes for estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 (HER2). The review presents the diagnostic and treatment methods of hereditary breast cancer. Clinical-morphological aspects allow the new diagnostic and treatment methods of hereditary breast cancer to be identified. Poly (ADP-ribose) polymerase (PARP) inhibitors demonstrate the potential for effective treatment of BRCA-associated breast cancer.

About the Authors

E. M. Bit-Sava
St-Petersburg State Pediatric Medical Academy, St-Petersburg I.P. Pavlov State Medical University
Russian Federation


N. B. Belogurova
St-Petersburg State Pediatric Medical Academy, St-Petersburg I.P. Pavlov State Medical University
Russian Federation


References

1. Имянитов Е.Н. Наследственный рак молочной железы // Практическая онкология. 2010. Т. 11, № 4. С. 258–264.

2. Карпухин А.В., Логинова А.Н., Хомич Е.В., Поспехова Н.И. Наследственная предрасположенность к раку молочной железы // Медицинская генетика. 2002. Т. 1, № 6. С. 254–261.

3. Киселев B.И., Муйжнек Е.Л. Наследственный рак и современные возможности лекарственной коррекции генетических дефектов. М., 2011. С. 1–16.

4. Любченко Л.Н., Портной С.М., Поспехова Н.И. и др. Клинико-молекулярные аспекты наследственного рака молочной железы // Молекулярная медицина. 2007. № 1. С. 8.

5. Портной С.М., Любченко Л.Н., Блохин С.Н. и др. Особенности BRCA-ассоциированного рака молочной железы и методы профилактики наследственных форм рака молочной железы и яичников // Материалы XIV Российского онкологического конгресса. М., 2010. С. 93–99.

6. Поспехова Н.И. Комплексный анализ наследственной формы рака молочной железы и/или яичников: молекулярно-генетические и фенотипические характеристики: Дис. … д-ра биол. наук. М., 2011. 220 с.

7. Соболевский В.А., Любченко Л.Н., Стрельцова Ю.А. Профилактическая мастэктомия с одномоментной реконструкцией. РОНЦ им. Н.Н. Блохина РАМН. Медицинская технология. М., 2010.

8. Часовникова О.Б., Митрофанов Д.В., Демченко Д.О. и др. Анализ встречаемости девяти мутаций в генах BRCA1 и BRCA2 у больных раком молочной железы в Сибирском регионе // Сибирский онкологический журнал. 2010. № 5 (41). С. 32–35.

9. Baudi F., Quaresima B., Grandinetti C. Evidence of founder mutation of BRCA1 in a highly homogeneous population from southern Italy with breast/ovarian cancer // Hum. Mutat. 2001. Vol. 18. P. 163–164.

10. Byrski Т., Gronwald J., Huzarski T. et al. Response to neoadjuvant therapy with cisplatin in BRCA1-positive breast cancer patients // Breast Cancer Res. Treat. 2008. Vol. 108 (2). P. 289–296.

11. Carey L.A., Dess E.C., Sawyer L. et al. The triple negative paradox: primary tumor sensitivity of breast cancer subtypes // Clin. Cancer Res. 2007. Vol. 13. P. 2329–2334.

12. Cazzaniga M., Bonanni B. Prevention of ER-negative breast cancer: where do we stand? // Eur. J. Cancer Prev. 2012. Vol. 21 (2). P. 171–181.

13. CHEK2 Breast Cancer Consortium. CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10860 breast cancer cases and 9065 controls from 10 studies // Am. J. Hum. Genet. 2004.Vol. 74. P. 1175–1182.

14. Chesire D.M., Dunn T.A., Eving C.M. et al. Identification and aryl hydrocarbon receptor // Cancer Res. 2004. Vol. 64 (7). P. 2523–2533.

15. Colleoni M., Viale G., Zahrieh D. et al. Expression of ER, PgR, Her1, Her2 and response: a study of preoperative chemotherapy // Ann. Oncol. 2008. Vol. 19. P. 465–472.

16. Donawho C.K., Luo Y., Luo Y. et al. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models // Clin. Cancer Res. 2007. Vol. 13 (9). P. 2728–2737.

17. Dontu G., El-Ashry D., Wisha M.S. Breast cancer/stem progenitor cells and the estrogen receptor // Trends Endocrinol Metabs. 2004. Vol. 15. P. 193–197.

18. Drew Y., Plummer R. The emerging potential of poly(ADP-ribose) polymerase inhibitors in the treatment of breast cancer // Curr. Opin. Obstet. Gynecol. 2010. Vol. 22. P. 67–71.

19. Easton D., Ghoussaini M., Fletcher O. et al. Genome-wide association analysis identifies three new breast cancer susceptibility loci // Nat. Genet. 2012. Vol. 44 (3). P. 312–318.

20. Efimova E.V., Mauceri H.J., Golden D.W. et al. Poly(ADP-ribose) polymerase inhibitor induces accelerated senescence in irradiated breast cancer cells and tumors // Cancer Res. 2010. Vol. 70 (15). P. 6277–6282.

21. Evans D.G., Lalloo F., Hopwood P. et al. Surgical decisions made by 158 women with hereditary breast cancer aged <50 years // Eur. J. Surg. Oncol. 2005. Vol. 31. P. 1112–1118.

22. Fan S., Ma Y.X., Wang C. et al. Role of direct interaction in BRCA ingibition of estrogen receptor activity // Oncogene. 2001. Vol. 20 (1). P. 77–87.

23. Fasano J., Muggia F. Breast cancer arising in a BRCA-mutated background: therapeutic implications from an animal model and drug development // Ann. Oncol. 2009. Vol. 20. P. 609–614.

24. Fedier A., Steiner R.A., Scwarz V.A. et al. The effect of loss of BRCA on the sensitivity to anticancer agents in p53-deficient cells // Int. J. Oncol. 2003. Vol. 22. P. 1169–1173.

25. Fourquet A., Stoppa-Lyonnet D., Kirova Y.M. et al. Familial breast cancer Clinical Response to Induction to chemotherapy or radiotherapy Related to BRCA12 Mutations Status // Am. J. Clin. Oncol. 2009. Vol. 32. P. 127–131.

26. Hemminki K., Müller-Myhsok B., Lichtner P. et al. Low-risk variants FGFR2, TNRC9 and LSP1 in German familial breast cancer patients // Int. J. Cancer. 2010. Vol. 126. P. 2858–2862.

27. Heywang-Köbrunner S.H., Schreer I., Heindel W., Katalinic A. Imaging studies for the early detection of breast cancer // Dtsch Ärztebl Int. 2008. Vol. 105. P. 541–547.

28. Hiller D.J., Chu Q.D. Current Status of Poly(ADP-ribose) Polymerase Inhibitors as Novel Therapeutic Agents for Triple-Negative Breast Cancer // Int. J. Breast Cancer. 2012: 829315. doi: 10.1155/2012/829315. Epub. 2011.

29. Isakoff S.J., Overmoyer B., Tung N.M. et al. A phase II trial of the PARP inhibitor veliparib (ABT888) and temozolomide for metastatic breast cancer // J. Clin. Oncol. 2009. Vol. 28. 15S, 118s.

30. Jones S., Hruban R.H., Kamiyama M. et al. Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene // Science. 2009. Vol. 324 (5924). P. 217.

31. Kadouri L., Hubert A., Rotenberg Y. et al. Cancer risks in carriers of the BRCA1/2 Ashkenazi founder mutations // J. Med. Genet. 2007. Vol. 44. P. 467–471.

32. King M.C., Marks J.H., Mandell J.B. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2 // Science. 2003. Vol. 302. P. 643–646.

33. Leach M.O., Boggis C.R., Dixon A.K. et al. Screening with magnetic resonance imaging and mammography of a UK population at high familial risk of breast cancer: a prospective multicentre cohort study (MARIBS) // Lancet. 2005. Vol. 365. P. 1769–1778.

34. Leong C.O., Vidnovic N., De Toung M.P. et al. The p63p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancer // J. Clin. Invest. 2007. Vol. 117. P. 1370–1380.

35. Liedtke C., Mazouni C., Hess K. et al. Response to neoadjuvant and long-tem survival in patients with triple-negative breast cancer // J. Clin. Oncol. 2008. Vol. 26. P. 1275–1281.

36. Meindl A., Ditsch N., Kast K., Schmutzler R.K. Hereditary Breast and Ovarian Cancer: New Genes, New Treatments, New Concepts // Dtsch Arztebl Int. 2011. Vol. 108 (19). P. 323–330.

37. Meindl A., Hellebrand H., Wiek C. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene // Nat. Genet. 2010. Vol. 42. 410–414.

38. O’Shaughnessy J., Osborne C., Pippen J.E. et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer // N. Engl. J. Med. 2011. Vol. 364 (3). P. 205–214.

39. O’Shaughnessy J., Schwartzberg L.S., Danso M.A. et al. A randomized phase III study of iniparib (BSI-201) in combination with gemcitabine/ carboplatin (G/C) in metastatic triple negative breast cancer // J. Clin. Oncol. 2011. Vol. 29/ Suppl. Abst. 1007.

40. Peelen T., van Viet M., Petrij-Bosch A. et al. A high proportion of novel mutations in BRCA1 with strong fouder effects among Dutch and Belgian hereditary breast and ovarian cancer families // Am. J. Hum. Genet. 1997. Vol. 60. P. 1041–1049.

41. Petit T., Wilt M., Rodier J. Are BRCA1 mutations a predictive factor for anthracycline-based neoadjuvant chemotherapy response in triple negative breast cancers? // J. Clin. Oncol. 2007. Vol. 25. Suppl. P. 580.

42. Rahman N., Seal S., Thompson D. et al. PALB2, which encodes a BRCA2- interacting protein, is a breast cancer susceptibility gene // Nat. Genet. 2007. Vol. 39. P. 165–167.

43. Rhiem K., Flucke U., Schmutzler R.K. BRCA1-associated breast carcinomas frequently present with benign sonographic features // Am. J. Roentgenol. 2006. Vol. 186. E. 11–12.

44. Rocca A., Viale G., Gelber R. et al. Pathologic complete remission rate after cisplatin based primary chemotherapy in breast cancer correlate with p63 expression // Cancer Chemother. Pharmacol. 2008. Vol. 61. P. 965–971.

45. Schrading S., Kuhl C.K. Mammographic, US, and MR imaging phenotypes of familial breast cancer // Radiology. 2008. Vol. 246. P. 58–70.

46. Shackleton M., Valliant F., Simpson K.J. et al. Generation of a functional mammary gland from a single stem cell // Nature. 2006. Vol. 439 (7072). P. 84–88.

47. Silver D.P., Richardson A.L., Eklund A.C. et al. Efficacy of Neoadjuvant Cisplatin in Triple-Negative Breast Cancer // J. Clin. Oncol. 2010. Vоl. 28 (7). P. 1145–1153.

48. Tassone P., Tagliaferri P., Perricelli A. et al. BRCA1 expression modulates chemosensitivity of BRCA-defective HC1937 human breast cancer cells // Br. J. Cancer. 2003. Vol. 88. P. 1285–1291.

49. Teng D., Bogden R., Mitchell J. et al. Low incidence of BRCA2 mutations in breast carcinoma and other cancer // Nat. Genet. 1996. Vol. 13 (2). P. 241–247.

50. Tong W.M., Yang Y.G., Cao W.H. et al. Poly (ADP-ribose)polymerase-1 plays a rolе in esisupressing mammary tumourigenesis in mice // Oncogene. 2007. Vol. 26. P. 3857–3867.

51. Tutt A., Robson M., Garber E. et al. Oral poly (ADP-ribose) inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof – of concept trial // Lancet. 2010. Vol. 376. P. 235–244.

52. Warner E., Plewes D.B., Hill K.A. et al. Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination // JAMA. 2004. Vol. 292. P. 1317–1325.

53. Welcsh P.L., King M. BRCA1 and BRCA2 and the genetics of the breast and ovarian cancer // Hum. molec. Genet. 2001. Vol. 10. P. 705–713.


Review

For citations:


Bit-Sava E.M., Belogurova N.B. HEREDITARY BREAST CANCER. Siberian journal of oncology. 2013;(1):75-81. (In Russ.)

Views: 939


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)