Diferentefects of pulsed X-rays in MOLT-4 cel line and human peripheral blod lymphocytes
Abstract
human cells in vitro. Analysis of radiation-induced γH2AX and 53BP1 repair foci in MOLT-4 cells with lymphoblastic origin was used for assessment of DNA double-strand breaks (DSB) in these cells. Number of residual radiation-induced γH2AX and 53BP1 foci at 18 h
after irradiation depended on frequency of X-ray pulses: at 8 pulses per second effect was highest in MOLT-4 cells and lowest in peripheral blood lymphocytes. It suggests that pulsed X-rays with various frequencies could be used for target influence on cancer cells being less
deleterious for normal human cells.
About the Authors
S. A. VasilyevRussian Federation
A. A. Belenko
Russian Federation
O. P. Kutenkov
Russian Federation
M. A. Bolshakov
Russian Federation
I. N. Lebedev
Russian Federation
V. V. Rostov
Russian Federation
References
1. Артемов К.П., Ельчанинов А.А., Кутенков О.П. и др. Импульсно-периодический источник рентгеновского излучения // Приборы и техника эксперимента. 2004. № 5. С. 166–167.
2. Булдаков М.А., Литвяков Н.В., Климов И.А. и др. Влияние низкодозового импульсно-периодического рентгеновского излучения на рост и метастазирование карциномы легких Льюис // Сибирский онкологический журнал. 2011. № 6 (48). С. 47–51.
3. Васильев С.А., Степанова Е.Ю., Кутенков О.П. и др. Двунитевые разрывы ДНК в лимфоцитах человека после однократного воздействия импульсно-периодического рентгеновского излучения в малых дозах: нелинейная дозовая зависимость // Радиационная биология. Радиоэкология. 2012. Т. 52. С. 31–38.
4. Литвяков Н.В., Ростов В.В., Булдаков М.А. и др. Ингибирование пролиферации опухолевых клеток импульсно-периодическим рентгеновским излучением // Сибирский онкологический журнал. 2006. № 1 (17). С. 24–31.
5. Belyaev I.Y. Radiation-induced DNA repair foci: spatio-temporal aspects of formation, application for assessment of radiosensitivity and biological dosimetry // Mutat. Res. 2010. Vol. 704 (1–3). P. 132–141.
6. Brenner D.J., Sachs R.K. Estimating radiation-induced cancer risks at very low doses: rationale for using a linear no-threshold approach // Radiat. Environ. Biophys. 2006. Vol. 44. P. 253–256.
7. Ding L.H., Shingyoji M., Chen F. et al. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses // Radiat. Res. 2005. Vol. 164. P. 17–26.
8. Farooque A., Mathur R., Verma A. et al. Low-dose radiation therapy of cancer: role of immune enhancement // Expert Rev. Anticancer Ther. 2011. Vol. 11 (5). P. 791–802.
9. Greenberg J.M., Gonzalez-Sarmiento R., Arthur D.C. et al. Immunophenotypic and cytogenetic analysis of Molt-3 and Molt-4: human T-lymphoid cell lines with rearrangement of chromosome 7 // Blood. 1988. Vol. 72. P. 1755–1760.
10. Rezacova M., Tichy A., Vavrova J. et al. Is defect in phosphorylation of Nbs1 responsible for high radiosensitivity of T-lymphocyte leukemia cells MOLT-4? // Leuk. Res. 2008. Vol. 32. P. 1259–1267.
11. Vavrova J., Rezacova M., Vokurkova D. et al. Cell cycle alteration, apoptosis and response of leukemic cell lines to gamma radiation with highand low-dose rate // Physiol. Res. 2004. Vol. 53. P. 335–342.
12. Yang F., Stenoien D.L., Strittmatter E.F. et al. Phosphoproteome profiling of human skin fibroblast cells in response to low- and high-dose irradiation // J. Proteome Res. 2006. Vol. 5. P. 1252–1260.
13. Yang F., Waters K.M., Miller J.H. et al. Phosphoproteomics profiling of human skin fibroblast cells reveals pathways and proteins affected by low doses of ionizing radiation // PLoS One. 2010. Vol. 5. e. 14152.
Review
For citations:
Vasilyev S.A., Belenko A.A., Kutenkov O.P., Bolshakov M.A., Lebedev I.N., Rostov V.V. Diferentefects of pulsed X-rays in MOLT-4 cel line and human peripheral blod lymphocytes. Siberian journal of oncology. 2013;(2):45-49. (In Russ.)