Preview

Siberian journal of oncology

Advanced search

NEW INDICATORS OF HSP27 FUNCTIONAL STATE IN BREAST CANCER CELLS WITH DIFFERENT VARIANTS OF HER2/NEU-STATUS

Abstract

New and original values (coefficient of phosphorylation and coefficient of intracellular distribution) proposed. They are reflecting a functional state of the heat shock protein 27 kDa (Hsp27) in tumor cells of breast cancer. These coefficients are more clearly reflect the functional state of Hsp27, than classical evaluation of chaperone expression only in the cytoplasm. It has been shown that in tumors with high expression of receptor Her2/neu on the membrane in the absence of gene amplification cerb2/neu (Her2/neu (3+) FISH (-)) there are low coefficients of phosphorylation and intracellular distribution as compared with Her2/neu-positive (Her2/neu (2+/3+) FISH (+)) and Her2/neu-negative tumors (Her2/neu (0/1+) FISH (-)). The possible molecular mechanisms of the phenomenon of dissonance cerb2 / neu gene amplification and receptor Her2/neu expression on the membrane of tumor cells breast cancer are discussing.

About the Authors

E. V. Kaigorodova
Tomsk Cancer Research Institute; Tomsk State University; Siberian State Medical University, Tomsk
Russian Federation


M. V. Bogatyuk
Tomsk Cancer Research Institute
Russian Federation


M. V. Zavyalova
Tomsk Cancer Research Institute; Tomsk State University; Siberian State Medical University, Tomsk
Russian Federation


N. A. Tarabanovskaya
Tomsk Cancer Research Institute
Russian Federation


E. I. Simolina
Tomsk Cancer Research Institute
Russian Federation


E. M. Slonimskaya
Tomsk Cancer Research Institute; Siberian State Medical University, Tomsk
Russian Federation


E. L. Choynzonov
Tomsk Cancer Research Institute; Siberian State Medical University, Tomsk
Russian Federation


V. M. Perelmuter
Tomsk Cancer Research Institute; Siberian State Medical University, Tomsk
Russian Federation


References

1. Simioni M.B., Thonel A.D., Hammann A., Joly A.L., Bossis G., Fourmaux E., Bouchot A., Landry J., Piechaczyk M., Garrido C. Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity // Oncogene. 2009. Vol. 28. P. 3332–3344. doi: 10.1038/onc.2009.188.

2. Kajgorodova E.V. Molecular mechanisms of regulatory action of heat shock protein 27 kDa in the apoptosis of tumor cells // Bjulleten’ sibirskoj mediciny. 2011. Vol. 10 (4). P. 65–70. [in Russian]

3. Sun X., Zhou Z., Fink D.J., Mata M. HspB1 silences translation of PDZ-RhoGEF by enhancing miR-20a and miR-128 expression to promote neurite extension // Molecular and Cellular Neuroscience. 2013. Vol. 57. P. 111–119. doi: 10.1016/j.mcn.2013.10.006.

4. Kajgorodova E.V., Rjazanceva N.V., Novickij V.V. Апоптоз и белки теплового шока. Tomsk: Pechatnaja manufaktura, 2012. 180 p. [in Russian]

5. Kajgorodova E.V., Zav'jalova M.V., Bogatjuk M.V., Perel'muter V.M. Особенности внутриклеточной локализации молекулярного шаперона Hsp27 в опухолевых клетках рака молочной железы // Mezhdunarodnyj zhurnal prikladnyh i fundamental’nyh issledovanij. 2014. № 4. P. 201–202. [in Russian]

6. Andrieu C., Taieb D., Baylot V., Ettinger S., Soubeyran P., De-Thonel A., Nelson C., Garrido C., So A., Fazli L., Bladou F., Gleave M., Iovanna J.L., Rocchi P. Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E // Oncogene. 2010. Vol. 29 (13). P. 1883–1896. doi: 10.1038/onc.2009.479.

7. Arrigo A.P. Human small heat shock proteins: protein interactomes of homo and hetero-oligomeric complexes: an update // FEBS Lett. 2013. Vol. 587 (13). P. 1959–1969. doi: 10.1016/j.febslet.2013.05.011.

8. Arrigo A.P., Gibert B. HspB1, HspB5 and HspB4 in Human Cancers: Potent Oncogenic Role of Some of Their Client Proteins // Cancers (Basel). 2014. Vol. 6 (1). P. 333–365. doi: 10.3390/cancers6010333.

9. Bryantsev A.L., Chechenova M.B., Sheldena E.A. Recruitment of phosphorylated small heat shock protein Hsp27 to nuclear speckles without stress // Exp. Cell Res. 2007. Vol. 313. P. 195–209.

10. Ciocca D.R., Calderwood S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications // Cell Stress Chaperones. 2005. Vol. 10 (2). P. 86–103.

11. Garrido C., Paul C., Seigneuric R., Kampinga H.H. The small heat shock proteins family: the long forgotten chaperones // Int. J. Biochem. Cell Biol. 2012. Vol. 44 (10). P. 1588–1592. doi: 10.1016/j. biocel.2012.02.022.

12. Griseri P., Pagès G. Regulation of the mRNA half-life in breast cancer // World J. Clin. Oncol. 2014. Vol. 5 (3). P. 323–334. doi: 10.5306/ wjco.v5.i3.323. Review.

13. Grzegrzolka J., Kurnol K., Piotrow P., Pula B., Kobierzycki C., Piotrowska A., Jablonska K., Wojnar A., Rys J., Dziegiel P., PodhorskaOkolow M. Hsp27 expression in invasive ductal breast carcinoma // Folia Histochem. Cytobiol. 2012. Vol. 50 (4). P. 527–533. doi: 10.5603/16717.

14. Hanna W.M., Rüschoff J., Bilous M., Coudry R.A., Dowsett M., Osamura R.Y., Penault-Llorca F., van de Vijver M., Viale G. HER2 in situ hybridization in breast cancer: clinical implications of polysomy 17 and genetic heterogeneity // Mod. Pathol. 2014. Vol. 27 (1). P. 4–18. doi: 10.1038/modpathol.2013.103.

15. Katsogiannou M., Andrieu C., Baylot V., Baudot A., Dusetti N.J., Gayet O., Finetti P., Garrido C., Birnbaum D., Bertucci F., Brun C., Rocchi P. The functional landscape of Hsp27 reveals new cellular processes such as DNA repair and alternative splicing and proposes novel anticancer targets // Mol. Cell Proteom. 2014. Vol. 13 (12). P. 3585–3601. doi: 10.1074/mcp.M114.041228.

16. Kim M.K., Kim S.C., Kim W.K., Kim K., Kim K-H., Yoo B.C. HSP27 phosphorylation inhibitor regulates Her2 expression in human breast cancer cell line SK-BR-3 with induced Herceptin resistance // EPMA J. 2014. Vol. 5 (1). P. 47.

17. Knapinska A.M., Gratacós F.M., Krause C.D., Hernandez K., Jensen A.G., Bradley J.J., Wu X., Pestka S., Brewer G. Chaperone Hsp27 modulates AUF1 proteolysis and AU-rich element-mediated mRNA degradation // Mol. Cell Biol. 2011. Vol. 31 (7). P. 1419–1431. doi: 10.1128/ MCB.00907-10.

18. Kostenko S., Moens U. Hsp27 phosphorylation patterns and cellular consequences // Springer Science Business Media Dordrecht, 2012. P. 43–74.

19. Liu Y., Ma L., Liu D., Yang Z., Yang C., Hu Z., Chen W., Yang Z., Chen S., Zhang Z. Impact of polysomy 17 on HER2 testing of invasive breast cancer patients // Int. J. Clin. Exp. Pathol. 2013. Vol. 7 (1). P. 163–173.

20. Marin-Vinader L., Shin C., Onnekink C., Manley J.L., Lubsen N.H. Hsp27 Enhances Recovery of Splicing as well as Rephosphorylation of SRp38 after Heat Shock // Mol. Biol. Cell. 2006. Vol. 17. P. 886–894.

21. Oskay Halacli S., Halacli B., Altundag K. The significance of heat shock proteins in breast cancer therapy // Med. Oncol. 2013. Vol. 30 (2). P. 575. doi: 10.1007/s12032-013-0575-y.

22. Parcellier A., Schmitt E., Gurbuxani S., Seigneurin-Berny D., Pance A., Chantôme A., Plenchette S., Khochbin S., Solary E., Garrido C. HSP27 is a ubiquitin-binding protein involved in I-kappaB alpha proteasomal degradation // Mol. Cell Biol. 2003. Vol. 23. P. 5790–5802.

23. Simioni M.B., Thonel A.D., Hammann A., Joly A.L., Bossis G., Fourmaux E., Bouchot A., Landry J., Piechaczyk M., Garrido C. Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity // Oncogene. 2009. Vol. 28. P. 3332–3344. doi: 10.1038/onc.2009.188.

24. Sun X., Zhou Z., Fink D.J., Mata M. HspB1 silences translation of PDZ-RhoGEF by enhancing miR-20a and miR-128 expression to promote neurite extension // Molecular and Cellular Neuroscience. 2013. Vol. 57. P. 111–119. doi: 10.1016/j.mcn.2013.10.006.


Review

For citations:


Kaigorodova E.V., Bogatyuk M.V., Zavyalova M.V., Tarabanovskaya N.A., Simolina E.I., Slonimskaya E.M., Choynzonov E.L., Perelmuter V.M. NEW INDICATORS OF HSP27 FUNCTIONAL STATE IN BREAST CANCER CELLS WITH DIFFERENT VARIANTS OF HER2/NEU-STATUS. Siberian journal of oncology. 2015;1(1):38-44. (In Russ.)

Views: 608


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)