Preview

Siberian journal of oncology

Advanced search

Mutational profile of KRAS-positive colorectal cancer

https://doi.org/10.21294/1814-4861-2022-21-1-47-56

Abstract

Aim: to study the features of the molecular genetic profile of KRAS-positive colorectal cancer (CRC).

Material and Methods. The study included 42 patients diagnosed with colorectal cancer. The KRAS gene mutation was detected in tumor tissue of these patients by real-time PC R. Using the next generation sequencing technology (NGS ) on the Illumina platform, the genes involved in the molecular pathogenesis of colorectal cancer, namely KRAS, BRAF, NRAS, APC, TP53, SMAD2, SMAD4, FBXW7, PIK3CA, CTNNB1, TCF7L2, MLH1, MSH2, MSH3, MSH6, ATM, TGF-BR2, AKT1, CDC27, CASP8, MAP2K4, DCC, DMD, MAP7, ERBB2, P3H3, MIER3, CADM1, FLT4, PTPN12, PIK3R1, and EP300 were analyzed. Sample preparation of libraries from isolated DNA was carried out using commercial kits GeneRead DNAS eq Targeted Panel v2 Human Colorectal Cancer (Qiagen, USA ); NEBNext Ultra DNA library Prep kit for Illumina and NEBNext Multiplex Oligos for Illumina (New England BioLabs).

Results. In 36 patients with KRAS-positive tumors, changes were observed in 13 genes involved in the molecular pathogenesis of colorectal cancer. A total of 82 somatic variants were identified. Moreover, 9 patients additionally had one mutation each, 17 patients had 2 mutations each, 7 patients had 3 mutations each, and 3 patients had 4 mutations each. Combination of three mutations in key genes involved in the pathogenesis of colorectal cancer (KRAS, APC и TP53) was detected in 15 (36 %) patients. Combination of two mutations in the KRAS and APC genes was detected in 10 (23.8 %) patients, and in the KRAS and TP53 genes – in 8 (19.1 %) patients. The largest number of somatic mutations was found in the APC (59.5 %) and TP53 (54.7 %) genes. It was hown that a combination of three mutations in key genes was the most unfavorable prognosis factor and indicated a higher aggressiveness of the tumor process.

Conclusion. The information obtained using the NGS method on the mutational status of a KRAS -positive tumor in patients with colorectal cancer allows for personalized treatment as well as predicting the outcome.

About the Authors

E. N. Telysheva
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation
Russian Federation

Ekaterina N. Telysheva, PhD, Pathoanatomical Department

SPIN-соде: 8700-1335. Research ID: X-9043-2018. Author ID (Scopus): 57193142191

16, 4th Tverskaya-Yamskaya St., 125047, Moscow, Russia



E. G. Shaikhaev
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation
Russian Federation

Eugene G. Shaikhaev, PhD, Pathoanatomical Department

SPIN-code: 5504-8523. Research ID: AAB-4981-2020. Author ID (Scopus): 55053528200

16, 4th Tverskaya-Yamskaya St., 125047, Moscow, Russia



G. P. Snigireva
N.N. Burdenko National Medical Research Center of Neurosurgery of the Ministry of Health of the Russian Federation
Russian Federation

Galina P. Snigireva, DSc, Pathoanatomical Department

SPIN-code: 4247-0600. Research ID: Y-4302-2018. Author ID (Scopus): 6602153865

16, 4th Tverskaya-Yamskaya St., 125047, Moscow, Russia



References

1. Arnold M., Sierra M.S., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global patterns and trends in colorectal cancer incidence and mortality. Gut. 2017; 66(4): 683–91. doi: 10.1136/gutjnl-2015-310912.

2. Stewart B.W., Bray F., Forman D., Ohgaki H., Straif K., Ullrich A., Wild C.P. Cancer prevention as part of precision medicine: ‘plenty to be done’. Carcinogenesis. 2016; 37(1): 2–9. doi: 10.1093/carcin/bgv166.

3. The state of cancer care for the population of Russia in 2016 / Eds. A.D. Kaprin, V.V. Starinskiy, G.V. Petrov. Moscow, 2017. 236 p. (in Russian)

4. Kaprin A.D., Starinskiy V.V., Petrova G.V. Malignant neoplasms in Russia in 2015 (morbidity and mortality). Moscow, 2017. 250 p. (in Russian)

5. Armaghany T., Wilson J.D., Chu Q., Mills G. Genetic alterations in colorectal cancer. Gastrointest Cancer Res. 2012; 5(1): 19–27.

6. Kit O.I., Vodolazhskii D.I. The molecular biology of colorectal cancer in clinical practice. Molecular Biology. 2015; 49(4): 531–40. (in Russian)

7. Price T.J., Tang M., Gibbs P., Haller D.G., Peeters M., Arnold D., Segelov E., Roy A., Tebbutt N., Pavlakis N., Karapetis C., Burge M., Shapiro J. Targeted therapy for metastatic colorectal cancer. Expert Rev Anticancer Ther. 2018; 18(10): 991–1006. doi: 10.1080/14737140.2018.1502664.

8. Cai Z.X., Tang X.D., Gao H.L., Tang C., Nandakumar V., Jones L., Ye H., Lou F., Zhang D., Sun H., Dong H., Zhang G., Liu Z., Dong Z., Guo B., Yan H., Yan C., Wang L., Su Z., Wang F.Y., Wan J.J., Fang F.O., Chen H.L., Shang D., Huang X.F., Chen S.Y., Guo H.S. APC, FBXW7, KRAS, PIK3CA, and TP53 Gene Mutations in Human Colorectal Cancer Tumors Frequently Detected by Next-Generation DNA Sequencing. J Mol Genet Med. 2014; 8: 4. doi: 10.4172/1747-0862.1000145.

9. Afrăsânie V.A., Marinca M.V., Alexa-Stratulat T., Gafton B., Păduraru M., Adavidoaiei A.M., Miron L., Rusu C. KRAS, NRAS, BRAF, HER2 and microsatellite instability in metastatic colorectal cancer – practical implications for the clinician. Radiol Oncol. 2019; 53(3): 265–74. doi: 10.2478/raon-2019-0033.

10. Lupini L., Bassi C., Mlcochova J., Musa G., Russo M., Vychytilova- Faltejskova P., Svoboda M., Sabbioni S., Nemecek R., Slaby O., Negrini M. Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients. BMC Cancer. 2015; 15: 808. doi: 10.1186/s12885-015-1752-5.

11. Gervas P.A., Litviakov N.V., Popova N.O., Dobrodeev A.Yu., Tarasova A.S., Yumov E.L., Ivanova F.G., Cheremisina O.V., Afanasyev S.G., Goldberg V.E., Cherdyntseva N.V. Problem and perspective to improve molecular testing to choose appropriate target therapy. Siberian Journal of Oncology. 2014; 2: 46–55. (in Russian)

12. Therkildsen C., Bergmann T.K., Henrichsen-Schnack T., Ladelund S., Nilbert M. The predictive value of KRAS, NRAS, BRAF, PIK3CA and PTEN for anti-EGFR treatment in metastatic colorectal cancer: A systematic review and meta-analysis. Acta Oncol. 2014; 53(7): 852–64. doi: 10.3109/0284186X.2014.895036.

13. Lin P.S., Semrad T.J. Molecular Testing for the Treatment of Advanced Colorectal Cancer: An Overview. Methods Mol Biol. 2018; 1765: 281–97. doi: 10.1007/978-1-4939-7765-9_18.

14. Ben Brahim E., Ayari I., Jouini R., Atafi S., Koubaa W., Elloumi H., Chadli A. Expression of epidermal growth factor receptor (EGFR) in colorectal cancer: An immunohistochemical study. Arab J Gastroenterol. 2018; 19(3): 121–4. doi: 10.1016/j.ajg.2018.08.002.

15. Gleeson F.C., Kipp B.R., Voss J.S., Campion M.B., Minot D.M., Tu Z.J., Klee E.W., Sciallis A.P., Graham R.P., Lazaridis K.N., Henry M.R., Levy M.J. Endoscopic ultrasound fine-needle aspiration cytology mutation profiling using targeted next-generation sequencing: personalized care for rectal cancer. Am J Clin Pathol. 2015; 143(6): 879–88. doi: 10.1309/AJCPU3J7FGAYQBRL.

16. Chang P.Y., Chen J.S., Chang N.C., Chang S.C., Wang M.C., Tsai S.H., Wen Y.H., Tsai W.S., Chan E.C., Lu J.J. NRAS germline variant G138R and multiple rare somatic mutations on APC in colorectal cancer patients in Taiwan by next generation sequencing. Oncotarget. 2016; 7(25):37566–80. doi: 10.18632/oncotarget.8885.

17. Cornejo K.M., Cosar E.F., Paner G.P., Yang P., Tomaszewicz K., Meng X., Mehta V., Sirintrapun S.J., Barkan G.A., Hutchinson L. Mutational Profile Using Next-Generation Sequencing May Aid in the Diagnosis and Treatment of Urachal Adenocarcinoma. Int J Surg Pathol. 2020; 28(1): 51–9. doi: 10.1177/1066896919872535.

18. Dallol A., Buhmeida A., Al-Ahwal M.S., Al-Maghrabi J., Bajouh O., Al-Khayyat S., Alam R., Abusanad A., Turki R., Elaimi A., Alhadrami H.A., Abuzenadah M., Banni H., Al-Qahtani M.H., Abuzenadah A.M. Clinical significance of frequent somatic mutations detected by high-throughput targeted sequencing in archived colorectal cancer samples. J Transl Med. 2016; 14(1): 118. doi: 10.1186/s12967-016-0878-9.

19. Imyanitov E.N. Clinical and molecular aspects of colorectal cancer: etiopathogenesis, prevention, individualization of treatment. Practical Oncology. 2005; 6 (2): 65–70. (in Russian)

20. Schell M.J., Yang M., Teer J.K., Lo F.Y., Madan A., Coppola D., Monteiro A.N., Nebozhyn M.V., Yue B., Loboda A., Bien-Willner G.A., Greenawalt D.M., Yeatman T.J. A multigene mutation classification of 468 colorectal cancers reveals a prognostic role for APC. Nat Commun. 2016; 7: 11743. doi: 10.1038/ncomms11743.

21. Wang C., Ouyang C., Cho M., Ji J., Sandhu J., Goel A., Kahn M., Fakih M. Wild-type APC Is Associated with Poor Survival in Metastatic Microsatellite Stable Colorectal Cancer. Oncologist. 2021; 26(3): 208–14. doi: 10.1002/onco.13607.

22. Li X.L., Zhou J., Chen Z.R., Chng W.J. P53 mutations in colorectal cancer – molecular pathogenesis and pharmacological reactivation. World J Gastroenterol. 2015; 21(1): 84–93. doi: 10.3748/wjg.v21.i1.84.

23. Conlin A., Smith G., Carey F.A., Wolf C.R., Steele R.J. The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut. 2005; 54(9): 1283–6. doi: 10.1136/gut.2005.066514.


Review

For citations:


Telysheva E.N., Shaikhaev E.G., Snigireva G.P. Mutational profile of KRAS-positive colorectal cancer. Siberian journal of oncology. 2022;21(1):47-56. (In Russ.) https://doi.org/10.21294/1814-4861-2022-21-1-47-56

Views: 720


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)