Preview

Siberian journal of oncology

Advanced search

The use of biocompatible composite scaffolds in oncology

https://doi.org/10.21294/1814-4861-2022-21-1-130-136

Abstract

Modern tissue engineering approaches are aimed at developing scaffolds that contribute to the development of the whole variety of intercellular interactions that imitate those in a real object.

The purpose of the study was to collect and summarize the data on the creation and use of three-dimensional cellular matrices.

Material and Methods. A systematic literature search was conducted in the PubMed, Medline, Cyber Leninka and Elibrary databases. Out of the 315 articles searched, 38 were selected for this review.

Results. A review of studies devoted to the development of three-dimensional composite structures (scaffolds) and their application in the field of cellular technologies was carried out. Methods for the manufacture of biocompatible structures using both natural biomaterials and synthetic ones, including various hydrogels and titanium alloys, were considered, and some physical and chemical characteristics were also discussed. The review discussed possible applications of 3D composite structures in oncology as one of the possible tools for expanding the fundamental understanding of the patterns of development of the malignant process, but also for use in the development of effective methods of treatment and the search for new drugs. The prospects for the use of scaffolds in the field of experimental oncology, namely in the creation of various types of tumor models, were outlined.

Conclusion. Currently, three-dimensional culture systems are replacing two-dimensional models. Advances in this direction are associated with the creation and development of various variants of cell matrices that contribute to the solution of a number of applied problems in the field of creating three-dimensional tumor models in vitro and in vivo, therapy of malignant tumors and restorative medicine.

About the Authors

O. I. Kit
National Medical Research Institute of Oncology, the Ministry of Health of the Russia
Russian Federation

Oleg I. Kit, MD, DSc, Professor, Corresponding Member of the Academy of Medical Sciences, General Director

SPIN-code: 1728-0329

63, 14th Line St., 344037, Rostov-on-Don, Russia



A. Yu. Maksimov
National Medical Research Institute of Oncology, the Ministry of Health of the Russia
Russian Federation

Aleksey Yu. Maksimov, MD, DSc, Professor, Deputy Director

SPIN-code: 7322-5589. Author ID (Scopus): 56579049500

63, 14th Line St., 344037, Rostov-on-Don, Russia



I. A. Novikova
National Medical Research Institute of Oncology, the Ministry of Health of the Russia
Russian Federation

Inna A. Novikova, MD, PhD, Deputy Director for Science

SPIN-code: 4810-2424. Researcher ID (WOS): E-7710-2018. Author ID (Scopus): 57202252773

63, 14th Line St., 344037, Rostov-on-Don, Russia



A. S. Goncharova
National Medical Research Institute of Oncology, the Ministry of Health of the Russia
Russian Federation

Anna S. Goncharova, PhD, Head of Testing Laboratory Center

SPIN-code: 7512-2039

63, 14th Line St., 344037, Rostov-on-Don, Russia



E. A. Lukbanova
National Medical Research Institute of Oncology, the Ministry of Health of the Russia
Russian Federation

Ekaterina A. Lukbanova, Researcher

SPIN-code: 4078-4200

63, 14th Line St., 344037, Rostov-on-Don, Russia



A. O. Sitkovskaya
National Medical Research Institute of Oncology, the Ministry of Health of the Russia
Russian Federation

Anastasiya O. Sitkovskaya, Head of Cell Technology Laboratory

SPIN-code: 1659-6976. Researcher ID (WOS): E-7496-2018. Author ID (Scopus): 56381527400

63, 14th Line St., 344037, Rostov-on-Don, Russia



V. G. Volovik
National Medical Research Institute of Oncology, the Ministry of Health of the Russia
Russian Federation

Vyacheslav G. Volovik, Postgraduate

63, 14th Line St., 344037, Rostov-on-Don, Russia



S. V. Chapek
Don State Technical University, the Ministry of Health of the Russia
Russian Federation

Sergey V. Chapek, Expert of the Laboratory of Engineering Technologies in Medicine

SPIN-code: 6689-3406

1, Gagarin Sq., 344001, Rostov-on-Don, Russia



References

1. Fong E.L., Harrington D.A., Farach-Carson M.C., Yu H. Heralding a new paradigm in 3D tumor modeling. Biomaterials. 2016 Nov; 108: 197–213. doi: 10.1016/j.biomaterials.2016.08.052.

2. Sadovoy M.A., Larionov P.M., Samokhin A.G., Rozhnova O.M. Cellular matrices (scaffolds) for bone regeneration: the current state of the problem. Spine Surgery. 2014; (2): 79–86. (in Russian).

3. Hutmacher D.W. Biomaterials offer cancer research the third dimension. Nature materials. 2010 Feb; 9(2): 90–3. doi:10.1038/nmat2619.

4. Kankala R.K., Xu X.M., Liu C.G., Chen A.Z., Wang S.B. 3Dprinting of microfibrous porous scaffolds based on hybrid approaches for bone tissue engineering. Polymers (Basel). 2018; 10(7). doi: 10.3390/polym10070807.

5. Farach-Carson M.C., Warren C.R., Harrington D.A., Carson D.D. Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. Matrix Biol. 2014 Feb; 34: 64–79. doi: 10.1016/j.matbio.2013.08.004.

6. Theocharis A.D., Skandalis S.S., Gialeli C., Karamanos N.K. Extracellular matrix structure. Adv Drug Deliv Rev. 2016 Feb; 97: 4–27. doi: 10.1016/j.addr.2015.11.001.

7. Grindel B.J., Martinez J.R., Pennington C.L., Muldoon M., Stave J., Chung L.W., Farach-Carson M.C. Matrilysin/matrix metalloproteinase- 7(MMP7) cleavage of perlecan/ HSPG2 creates a molecular switch to alter prostate cancer cell behavior. Matrix Biol. 2014; 36: 64–76. doi: 10.1016/j.matbio.2014.04.005.

8. Sabeh F., Shimizu-Hirota R., Weiss S.J. Protease-dependent versusindependent cancer cell invasion programs: three-dimensional amoeboid movement revisited. J Cell Biol. 2009 Apr; 185(1): 11–9. doi: 10.1083/jcb.200807195.

9. Shoval H., Karsch-Bluman A., Brill-Karniely Y., Stern T., Zamir G., Hubert A., Benny O. Tumor cells and their crosstalk with endothelial cells in 3D spheroids. Sci Rep. 2017 Sep 5; 7(1): 10428. doi: 10.1038/s41598-017-10699-y.

10. Panzetta V., Musella I., Rapa I., Volante M., Netti P.A., Fusco S. Mechanical phenotyping of cells and extracellular matrix as grade and stage markers of lung tumor tissues. Acta Biomaterialia. 2017 Jul; 57: 334–41. doi: 10.1016/j.actbio.2017.05.002.

11. Kim K., Dean D., Mikos A.G., Fisher J.P. Effect of initial cell seeding density on early osteogenic signal expression of rat bone marrow stromal cells cultured on crosslinked poly(propylene fumarate) disks. Biomacromolecules. 2009; 10: 1810–7. doi: 10.1021/bm900240k.

12. Melchels F.P., Feijen J., Grijpma D.W. A poly (D,L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials. 2009 Aug; 30(23–24): 3801–9. doi: 10.1016/j.biomaterials.2009.03.055.

13. Osmond M., Bernier S.M., Pantcheva M.B., Krebs M.D. Collagen and collagen‐chondroitin sulfate scaffolds with uniaxially aligned pores for the biomimetic, three dimensional culture of trabecular meshwork cells. Biotechnol Bioengin. 2017 Apr; 114(4): 915–23. doi: 10.1002/bit.26206.

14. Tiffany A.S., Gray D.L., Woods T.J., Subedi K, Harley B.A.C. The inclusion of zinc into mineralized collagen scaffolds for craniofacial bone repair applications. Acta Biomaterialia. 2019 Jul; 93: 86–96. doi: 10.1016/j.actbio.2019.05.031.

15. Prestwich G.D. Simplifying the extracellular matrix for 3‐D cell culture and tissue engineering: a pragmatic approach. J Cell Biochem. 2007 Aug 15; 101(6): 1370–83. doi: 10.1002/jcb.21386.

16. Lam N.T., Lam H., Sturdivant N.M., Balachandran K. Fabrication of a matrigel–collagen semi-interpenetrating scaffold for use in dynamic valve interstitial cell culture. Biomedical Materials. 2017 Jul 24; 12(4): 045013. doi: 10.1088/1748-605X/aa71be.

17. Anguiano M., Castilla C., Maska M., Ederra C., Pelaez R., Morales X., Munoz-Arrieta G., Mujika M., Kozubek M., Munoz-Barrutia A., Rouzaut A., Arana S., Garcia-Aznar J.M., Ortiz-de-Solorzano C. Characterization of three-dimensional cancer cell migration in mixed collagen- Matrigel scaffolds using microfluidics and image analysis. PloS one. 2017 Feb 6; 12(2). doi: 10.1371/journal.pone.0171417.

18. Maru Y., Tanaka N., Itami M., Hippo Y. Efficient use of patientderived organoids as a preclinical model for gynecologic tumors. Gynecol Oncol. 2019 Jul; 154(1): 189–98. doi: 10.1016/j.ygyno.2019.05.005.

19. Li P., Sakuma K., Tsuchiya S., Sun L., Hayamizu Y. Fibroin-like peptides self-assembling on two-dimensional materials as a molecular scaffold for potential biosensing. ACS Appl Mater Interfaces. 2019 Jun 12; 11(23): 20670–7. doi: 10.1021/acsami.9b04079.

20. Kokorev O.V., Khodorenko V.N., Anikeev S.G., Dambaev G.Ts., Gunter V.E. Features of the use of porous-permeable incubators made of titanium nickelide as carriers of pancreatic cell cultures. Bulletin of New Medical Technologies. 2014; (1): 47. (in Russian). doi: 10.12737/46813.

21. Kokorev O.V., Khodorenko V.N., Dambaev G.Ts., Gunter V.E. Functional characterization of tissue equivalents of various tissues using porous-permeable titanium nickelide incubators. Acta Biomedica Scientifica. 2015; (2): 73–9. (in Russian).

22. Murphy C.M., Haugh M.G., O’Brien F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagenglycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010 Jan; 31(3): 461–6. doi: 10.1016/j.biomaterials.2009.09.063.

23. Carvalho M.R., Lima D., Reis R.L., Correlo V.M., Oliveira J.M. Evaluating biomaterial-and microfluidic-based 3D tumor models. Trends Biotechnol. 2015; 33(11): 667–78. doi: 10.1016/j.tibtech.2015.09.009.

24. Galimova E.S., Galagudza M.М. Two-dimensional and three-dimensional cell culture models in vitro: pros and cons. Bulletin of Siberian Medicine. 2018; 17(3): 188–96. (in Russian). doi: 10.20538/1682-0363-2018-3-188-196.

25. Liu G., Wang B., Li S., Jin Q., Dai Y. Human breast cancer decellularized scaffolds promote epithelial-to-mesenchymal transitions and stemness of breast cancer cells in vitro. J Cell Physiol. 2019; 234(6): 9447–56. doi: 10.1002/jcp.27630.

26. Cruz‐Neves S., Ribeiro N., Graca I., Jeronimo C., Sousa S.R., Monteiro F.J. Behavior of prostate cancer cells in a nanohydroxyapatite/ collagen bone scaffold. J Biomed Mater Res A. 2017; 105(7): 2035–46. doi: 10.1002/jbm.a.36070.

27. Gock M., Kühn F., Mullins C.S., Krohn M., Prall F., Klar E., Linnebacher M. Tumor Take Rate Optimization for Colorectal Carcinoma Patient-Derived Xenograft Models. Biomed Res Int. 2016; 2016: 1715053. doi: 10.1155/2016/1715053.

28. Moshe A., Izraely S., Sagi-Assif O., Prakash R., Telerman A., Meshel T., Carmichael T., Witz I.P. Cystatin C takes part in melanomamicroglia cross-talk: possible implications for brain metastasis. Clin Exp Metastasis. 2018; 35(5–6): 369–78. doi: 10.1007/s10585-018-9891-0.

29. Kit O.I., Kolesnikov E.N., Maksimov A.Yu., Protasova T.P., Goncharova A.S., Lukbanova E.A. Methods for creating orthotopic models of esophageal cancer and their application in preclinical studies. Modern Problems of Science and Education. 2019; (2): 96. (in Russian).

30. Pavlova A.А., Maschan M.А., Ponomarev V.B. Adoptitive immunotherapy with genetically engineered T-lymphocytes modified to express chimeric antigen receptors. Oncohematology. 2017; 12(1): 17–32. (in Russian). doi: 10.17650/1818-8346-2017-12-1-17-32.

31. Morishita S., Tsubaki A., Hotta K., Fu J.B., Fuji S. The benefit of exercise in patients who undergo allogeneic hematopoietic stem cell transplantation. J Int Soc Phys Rehabil Med. 2019; 2(1): 54–61. doi: 10.4103/jisprm.jisprm_2_19.

32. Melief C.J.M. Cancer: precision T-cell therapy targets tumours. Nature. 2017; 547(7662): 165–7. doi: 10.1038/nature23093.

33. Bonifant C.L., Jackson H.J., Brentjens R.J., Curran K.J. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics. 2016; 3: 16011. doi: 10.1038/mto.2016.11.

34. Rose F.R., Oreffo R.O. Bone tissue engineering: hope vs hype. Biochem Biophys Res Commun. 2002; 292(1): 1–7. doi: 10.1006/bbrc.2002.6519.

35. Farshadi M., Johari B., Erfani Ezadyar E., Gholipourmalekabadi M., Azami M., Madanchi H., Haramshahi S.M.A., Yari A., Karimizade A., Nekouian R., Samadikuchaksaraei A. Nanocomposite scaffold seeded with mesenchymal stem cells for bone repair. Cell Biol Int. 2019 Feb 27. doi: 10.1002/cbin.11124.

36. Epishev V.V., Petrova L.N., Aladin A.S., Smirnov V.A., Sulatskaya E.Yu., Erlikh V.V., Vazhenin A.V. Experience of using individual titan implants in nasal reconstruction surgery. Russian Journal of Transplantology and Artificial Organs. 2016; 18(3): 107–15. (in Russian). doi: 10.15825/1995-1191-2016-3-107-115.

37. So E., Mandas V.H., Hlad L. Large osseous defect reconstruction using a custom three-dimensional printed titanium truss implant. J Foot Ankle Surg. 2018; 57(1): 196–204. doi: 10.1053/j.jfas.2017.07.019.


Review

For citations:


Kit O.I., Maksimov A.Yu., Novikova I.A., Goncharova A.S., Lukbanova E.A., Sitkovskaya A.O., Volovik V.G., Chapek S.V. The use of biocompatible composite scaffolds in oncology. Siberian journal of oncology. 2022;21(1):130-136. (In Russ.) https://doi.org/10.21294/1814-4861-2022-21-1-130-136

Views: 669


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)