Preview

Siberian journal of oncology

Advanced search

ROLE OF UBIQUITIN PROTEASOME SYSTEM IN GASTRIC CANCER PATHOGENESIS

Abstract

The review presents data on the ubiquitin-proteasome system participation in pathogenesis of gastric cancer. The role of proteasome system in regulation of cell cycle, angiogenesis and tumor metastasis has been shown. The aspects of the participation of ubiquitin-proteasome proteolytic system in the pathogenesis of intensive muscle protein degradation in cancer cachexia are analyzed. The role of proteasome system in the development of H. Pylori-induced gastric cancer is discussed. The clinical assessment of selective proteasome inhibitor (bortezomib) is a promising area of research for metastatic gastric cancer.

About the Authors

E. V. Ivanova
Tomsk Cancer Research Institute
Russian Federation
5, Kooperativny Street, 634050-Tomsk


I. V. Kondakova
Tomsk Cancer Research Institute
Russian Federation
5, Kooperativny Street, 634050-Tomsk


О. V. Cheremisina
Tomsk Cancer Research Institute
Russian Federation
5, Kooperativny Street, 634050-Tomsk


S. G. Afanasyev
Tomsk Cancer Research Institute
Russian Federation
5, Kooperativny Street, 634050-Tomsk


References

1. Abramova E.B., Sharova N.P., Karpov V.L. The proteasome: Destroy to live // Molekuljarnaja biologija. 2002. Vol. 36 (5). P. 761–776. [in Russian]

2. Avdeenko T.V., Vusik M.V., Pleshko R.I., Evtushenko V.A., Matveenko O.A. Role of infectious component and inflammatory cell infiltrate in pathogenesis of gastric cancer // Sibirskij onkologicheskij zhurnal. 2011. № 5. P. 79–85. [in Russian]

3. Ivanova Je.V., Kondakova I.V., Spirina L.V., Afanas’ev S.G., Avgustinovich A.V., Cheremisina O.V. Chymotripsin-like activity of proteasomes and activity of calpines in stomach and colon cancer patients // Bjulleten’ jeksperimental’noj biologii i mediciny. 2014. Vol. 157 (6). P. 753–756. [in Russian]

4. Kondakova I.V., Spirina L.V., Shashova E.E., Koval’ V.D., Kolomiec L.A., Chernyshova A.L., Slonimskaja E.M. Proteasome activity in tumors of the female reproductive system // Bioorganicheskaja himija. 2012. Vol. 38 (1). P. 106–110. [in Russian]

5. Kondakova I.V., Spirina L.V., Koval’ V.D., Shashova E.E., Chojnzonov E.L., Ivanova Je.V., Kolomiec L.A., Chernyshova A.L., Slonimskaja E.M., Usynin E.A., Afanas’ev S.G. Chymotripsin-like activity and subunit composition of proteasomes in human cancers // Molekuljarnaja biologija. 2014. Vol. 48 (3). P. 444–451. [in Russian]

6. Martov S.I., Sevost’janova N.V., Dmitrieva A.I., Koshel’ A.P., Stepovaja E.A., Klokov S.S., Rakitin S.V., Zalesnaja E.V., Karpovich A.V., Maevskij E.I. Gene polymorphism of phase I and phase II xenobiotic biotransformation enzymes in gastric cancer patients // Sibirskij onkologicheskij zhurnal. 2010. № 4. P. 30–33. [in Russian]

7. Rotanova T.V., Mel’nikov E.E. б ATP-dependent proteases and proteolytic complexes responsible for the intracellular protein degradation // Biomedicinskaja himija. 2008. Vol. 54 (5). P. 512–530. [in Russian]

8. Sorokin A.V., Kim E.R., Ovchinnikov L.P. Proteasome system of protein degradation and processing // Uspehi biologicheskoj himii. 2009. № 49. P. 3–76. [in Russian]

9. Spirina L.V., Kondakova I.V. Role of intracellular specific proteolysis in tumorigenesis // Voprosy onkologii. 2008. Vol. 54 (6). P. 690–694. [in Russian]

10. Spirina L.V., Kondakova I.V., Usynin E.A., Vintizenko S.I. Angiogenesis regulation in renal and bladder cancers // Sibirskij onkologicheskij zhurnal. 2008. № 4. P. 65–70. [in Russian]

11. Spirina L.V., Kondakova I.V., Usynin E.A., Kolomiec L.A., Chojnzonov E.L., Muhamedov M.R., Chernyshova A.L., Sharova N.P. Proteasome activity in cancer tissues // Sibirskij onkologicheskij zhurnal. 2009. № 5. P. 49–52. [in Russian]

12. Cimoha A.S. Proteasomes: their role in cellular processes // Citologija. 2010. Vol. 52 (4). P. 277–300. [in Russian]

13. Cimoha A.S., Vatazhok Ju.Ja., Vashukova E.S., Kulichkova V.A., Volkova I.V., Ermolaeva Ju.V., Mittenberg A.G., Evteeva I.N., Ivanov V.A., Gauze L.N., Konstantinova I.M. The phosphorylation state of proteasomes and α-RNP from rat liver cells // Citologija. 2005. Vol. 47 (5). P. 436–441. [in Russian]

14. Sharova N.P., Astahova T.M., Bondareva L.A., Dmitrieva S.B., Erohov P.A. Peculiarities of proteasome pool formation in rat spleen and liver during postnatal development // Biohimija. 2006. Vol. 71 (9). P. 1278–1286. [in Russian]

15. Almond J.B., Cohen G.M. The proteasome; a novel target for cancer chemotherapy // Leukemia. 2002. Vol. 16. P. 433–443.

16. Aoyagi K., Kouhuji K., Miyagi M., Kizaki J., Isobe T., Hashimoto K., Shirouzu K. Molecular targeting therapy using bevacizumab for peritoneal metastasis from gastric cancer // World J. Crit. Care Med. 2013. Vol. 2 (4). Р. 48–55. doi: 10.5492/wjccm.v2.i4.48. eCollection 2013 Nov 4.

17. Bae S.H., Ryoo H.M., Kim M.K., Lee K.H., Sin J.I., Hyun M.S. Effects of the proteasome inhibitor bortezomib alone and in combination with chemotherapeutic agents in gastric cancer cell lines // Oncol Reports. 2008. Vol. 19 (4). P. 1027–1032.

18. Bossola M., Muscaritoli M., Costelli P., Grieco G., Bonelli G., Pacelli F., Rossi Fanelli F., Doglietto G.B., Baccino F.M. Increased Muscle Proteasome Activity Correlates With Disease Severity in Gastric Cancer Patients // Ann. Surg. 2003. Vol. 237 (3). P. 384–389.

19. Desdouets C., Brechot C. P27: A pleiotropic regulator of cellular phenotype and a target for cell cycle dysregulation in cancer // Pathol. Biol. (Paris). 2000. Vol. 48. P. 203–210.

20. Eguchi H., Carpentier S., Kim S.S., Moss S.F. p27kip1 regulates the apoptotic response of gastric epithelial cells to Helicobacter pylori // Gut. 2004. Vol. 53 (6). Р. 797–804.

21. Fan X.M., Wong B.C., Wang W.P., Zhou X.M., Cho C.H., Yuen S.T., Leung S.Y., Lin M.C., Kung H.F., Lam S.K. Inhibition of proteasome function induced apoptosis in gastric cancer // Cancer. 2001. Vol. 93 (4). P. 481–488.

22. Hasselgren P.O., Fischer J.E. Muscle cachexia: current concepts of intracellular mechanisms and molecular regulation // Ann. Surg. 2001. Vol. 233. Р. 9–17.

23. Hempel D., Wojtukiewicz M.Z., Kozłowski L., Romatowski J., Ostrowska H. Increased plasma proteasome chymotrypsin-like activity in patients with advanced solid tumors // Tumour Biol. 2011. Vol. 32, № 4. Р. 753–759. doi: 10.1007/s13277-011-0177-2

24. Hirata Y., Ogasawara N., Sasaki M., Mizushima T., Shimura T., Mizoshita T., Mori Y., Kubota E., Wada T., Tanida S., Kataoka H., Kamiya T., Higashiyama S., Joh T. BCL6 degradation caused by the interaction with the C-terminus of pro-HB-EGF induces cyclin D2 expression in gastric cancers // Br. J. Cancer. 2009. Vol. 100 (8). Р. 1320–1329. doi: 10.1038/sj.bjc.6605010

25. Huang Q., Huang Q., Lin W., Lin J., Lin X. Potential roles for PA28beta in gastric adenocarcinoma development and diagnosis // J. Cancer Res. Clin. Oncol. 2010. Vol. 136. P. 1275–1282. doi: 10.1007/ s00432-010-0778-y.

26. Lai A.Z., Durrant M., Zuo D., Ratcliffe C.D., Park M. Met Kinasedependent Loss of the E3 Ligase Cbl in Gastric Cancer // J. Biol. Chem. 2012. Vol. 287 (11). P. 8048–8059. doi: 10.1074/jbc.M112.339820.

27. Lee J., Seo J.W., Jun H.J., Ki C.S., Park S.H., Park Y.S., Lim H.Y., Choi M.G., Bae J.M., Sohn T.S., Noh J.H., Kim S., Jang H.L., Kim J.Y., Kim K.M., Kang W.K., Park J.O. Impact of MET amplification ongastric cancer: possible roles as a novel prognostic marker and a potential therapeutic target // Oncol. Rep. 2011. Vol. 25 (6). Р. 1517–1524. doi: 10.3892/or.2011.1219.

28. Lu B., Li M. Helicobacter pylori eradication for preventing gastric cancer // World J. Gastroenterol. 2014. Vol. 20 (19). P. 5660–5665. doi: 10.3748/wjg.v20.i19.5660.

29. Lu Z., Hunter T. Degradation of activated protein kinases by ubiquitination // Annu. Rev. Biochem. 2009. Vol. 78. P. 435–475. doi: 10.1146/ annurev.biochem.013008.092711.

30. Mansoor O., Beaufrere B., Boirie Y., Ralliere C., Taillandier D., Aurousseau E., Schoeffler P., Arnal M., Attaix D. Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients // Proc. Natl. Acad. Sci. USA. 1996. Vol. 93. Р. 2714–2718.

31. Meissner M., Reichenbach G., Stein M., Hrgovic I., Kaufmann R., Gille J. Down-regulation of vascular endothelial growth factor receptor 2 is a major molecular determinant of proteasome inhibitor-mediated antiangiogenic action in endothelial cells // Cancer Res. 2009. Vol. 69 (5). P. 1976–1984. doi: 10.1158/0008-5472.CAN-08-3150.

32. Nakata W., Hakyakawa Y., Nakagawa H., Sakamoto K., Kinoshita H., Takahashi R., Hirata Y., Maeda S., Koike K. Anti-tumor activity of the proteasome inhibitor bortezomib in gastric cancer // Int. J. Oncol. 2011. Vol. 39 (6). P. 1529–1536. doi: 10.3892/ijo.2011.1141.

33. O’Hara A., Howarth A., Varro A., Dimaline R. The role of proteasome beta subunits in gastrin-mediated transcription of plasminogen activator inhibitor-2 and regenerating protein1 // PLoS One. 2013. Vol. 8 (3). e. 59913. doi: 10.1371/journal.pone.0059913.

34. Pallares-Trujillo J., Agell N., Garcia-Martinez C., López-Soriano F.J., Argilés J.M. The ubiquitin system: a role in disease? // Med. Res. Rev. 1997. Vol. 17 (2). Р. 139–161.

35. Rahimi N. A role for protein ubiquitination in VEGFR-2 signalling and angiogenesis // Biochem. Soc. Trans. 2009. Vol. 37. P. 1189–1193. doi: 10.1042/BST0371189.

36. Shah M.A., Power D.G., Kindler H.L., Holen K.D., Kemeny M.M., Ilson D.H., Tang L., Capanu M., Wright J.J., Kelsen D.P. A multicenter, phase II study of Bortezomib (PS-341) in patients with unresectable or metastatic gastric and gastroesophagel junction adenocarcinoma // Invest. New Drugs. 2010. Vol. 29 (6). P. 1475–1481. doi: 10.1007/s10637-010- 9474-7.

37. Spirina L.V., Yunusova N.V., Kondakova I.V., Kolomiets L.A., Koval V.D., Chernyshova A.L., Shpileva O.V. Association of growth factors, HIF-1 and NF-κB expression witn proteasomes in endometrial cancer // Mol. Biol. Rep. 2012. Р. 8655–8662. doi: 10.1007/s11033-012-1720-y.

38. Sun X.P., Dong X., Lin L., Jiang X., Wei Z., Zhai B., Sun B., Zhang Q., Wang X., Jiang H., Krissansen G.W., Qiao H., Sun X. Upregulation of survivin by AKT and hypoxia-inducible factor 1α contributes to cisplatin resistance in gastric cancer // FEBS J. 2014. Vol. 281 (1). Р. 115–128. doi: 10.1111/febs.12577.

39. Tsang Y.H., Lamb A., Romero-Gallo J., Huang B., Ito K., Peek R.M. Jr., Ito Y., Chen L.F. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation // Oncogene. 2010. Vol. 29 (41). P. 5643–5650. doi: 10.1038/onc.2010.304.

40. Wang S., Wu X., Zhang J., Chen Y., Xu J., Xia X., He S., Qiang F., Li A., Shu Y., Røe O.D., Li G., Zhou J.W. CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer // Gut. 2013. Vol. 62 (4). P. 496–508. doi: 10.1136/ gutjnl-2011-301522.

41. Zhang Y., Shi Y., Li X., Du R., Luo G., Xia L., Du W., Chen B., Zhai H., Wu K., Fan D. Proteasome inhibitor MG 132 reverses multidrug resistance of gastric cancer through enhancing apoptosis and inhibiting P-gp // Cancer Biol Ther. 2008. Vol. 7 (4). P. 540–546.


Review

For citations:


Ivanova E.V., Kondakova I.V., Cheremisina О.V., Afanasyev S.G. ROLE OF UBIQUITIN PROTEASOME SYSTEM IN GASTRIC CANCER PATHOGENESIS. Siberian journal of oncology. 2014;(5):64-71. (In Russ.)

Views: 615


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)