ANALYSIS OF MUTATIONS IN KRAS AND BRAF GENES IN COLORECTAL CANCER IN RUSSIAN PATIENTS
https://doi.org/10.21294/1814-4861-2016-15-2-36-41
Abstract
Mutations in KRAS and BRAF genes in 80 colorectal cancer (CRC) samples from Russian patients were tested using two methods: 1) allele-specific real-time PCR (as-rt PCR) and 2) wild-type blocking PCR with Sanger sequencing (WTBS). Material and methods. Sections of fresh frozen or formalin-fixed paraffin embedded tumor tissue from 80 patients were used in the study. Tumor tissue content was determined on H&E stained sections. Samples were first tested by as-rtPCR for common mutations of the KRAS gene (G12C, G12S, G12R, G12V, G12D, G12A, G13D) and mutations BRAFV600E. After that samples were evaluated in PCR with oligonucleotide blocking amplification of wild-type DNA for enrichment with mutant allele followed by Sanger sequencing of the PCR DNA (WTBS method). Results. In 5 (6.3 %) cases samples had low tumor tissue content (<20 %). In reconstruction experiments both methods detected 1–5 % mutant allele. Mutations of KRAS and BRAF genes were found in 37 (46 %) and 3 (3.8 %) of the clinical cases, respectively. Classification in to wild-type and mutant samples by both methods was in agreement in 79 (98.8 %) cases. A single case with rare mutation KRASG13R was detected by WTBS, but was missed by as-rtPCR since this mutation is not included in the test. Of note, KRAS mutations were detected by both tests in two cases with low tumor content. Two cases were found with multiple mutations: one with KRASG12V and G13D, and one with KRASG13D and BRAFV600E. Conclusion. The frequency of mutations in CRC was 46 % for mutations in the KRAS gene, and 3.8 % for the BRAF. We showed 98.8% agreement in KRAS mutation detection by sensitive Sanger sequencing and as-rt PCR. The data on the frequencies of mutations are in agreement with studies in other countries. This in the first study to discover CRC case with multiple mutations KRASG13D and BRAFV600E.
About the Authors
E. E. PisarevaRussian Federation
Junior Researcher, Genetic engineering laboratory, Institute of Molecular Biology and Biophysics (Novosibirsk, Russia). SPIN-code: 7151-5842.
L. N. Ljubchenko
Russian Federation
MD, DSc, Professor, Head of the Laboratory of clinical oncogenetics, Russian Cancer Research Center memory of N.N. Blokhin (Moscow, Russia). AuthorID: 140311.
S. P. Kovalenko
Russian Federation
PhD, Head of the Genetic engineering laboratory, Institute of Molecular Biology and Biophysics (Novosibirsk, Russia). SPIN-code: 2272-6747.
V. A. Shamanin
Russian Federation
PhD, Senior Researcher, Genetic engineering laboratory, Institute of Molecular Biology and Biophysics (Novosibirsk, Russia). SPIN-code: 5669-0201.
References
1. Malignancies in Russia in 2011 (morbidity and mortality) / Ed. V.I. Chissov, V.V. Starinskiy, G.V. Petrov. M., 2013. P. 1–15. [ in Russian]
2. Kit O.I., Vodolazhskij D.I., Dvadnenko K.V., Gudueva E.N., Kutilin D.S., Gevorkjan Ju.A., Vladimirova L.Ju. The frequency of mutations in KRAS in different clinical groups of patients with colorectal cancer of the south of Russia // Medicinskaja genetika. 2014. Vol. 13, № 12 (150). P. 35–41. [in Russian]
3. Mazurenko N.N., Gagarin I.M., Cyganova I.V., Mochal’nikova V.V., Breder V.V., Gorbunova V.A. The frequency and spectrum of mutations in KRAS in metastatic colorectal cancer // Voprosy onkologii. 2013. Vol. 59 (6). P. 751–755. [in Russian]
4. Shubin V.P., Pospehova N.I., Cukanov A.S., Rybakov E.G., Panina M.V., Sushkov O.I., Achkasov S.I., Zhdankina S.N., Kashnikov V.N., Frolov S.A., Shelygin Ju.A. The frequency and spectrum of mutations in the KRAS gene in colon cancer and cancer of different localization of the anal canal // Medicinskaja genetika. 2014. Vol. 13, № 5 (143). P. 31–35. [in Russian]
5. Arcila M., Lau C., Nafa K., Ladanyi M. Detection of KRAS and BRAF mutations in colorectal carcinoma roles for high-sensitivity locked nucleic acid-PCR sequencing and broad-spectrum mass spectrometry genotyping // J. Mol. Diagn. 2011. Vol. 13 (1). P. 64–73. doi: 10.1016/j.jmoldx.2010.11.005.
6. Blanco-Calvo M., Concha Á., Figueroa A., Garrido F., Valladares-Ayerbes M. Colorectal Cancer Classification and Cell Heterogeneity: A Systems Oncology Approach // Int. J. Mol. Sci. 2015. Vol. 16 (6). P. 13610–13632. doi: 10.3390/ijms160613610.
7. De Roock W., Claes B., Bernasconi D., De Schutter J., Biesmans B., Fountzilas G., Kalogeras K.T., Kotoula V., Papamichael D., Laurent-Puig P., Penault-Llorca F., Rougier P., Vincenzi B., Santini D., Tonini G., Cappuzzo F., Frattini M., Molinari F., Saletti P., De Dosso S., Martini M., Bardelli A., Siena S., Sartore-Bianchi A., Tabernero J., Macarulla T., Di Fiore F., Gangloff A.O., Ciardiello F., Pfeiffer P., Qvortrup C., Hansen T.P., Van Cutsem E., Piessevaux H., Lambrechts D., Delorenzi M., Tejpar S. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis // Lancet Oncol. 2010. Vol. 11 (8). P. 753–762. doi: 10.1016/S1470-2045(10)70130-3.
8. Di Nicolantonio F., Martini M., Molinari F., Sartore-Bianchi A., Arena S., Saletti P., De Dosso S., Mazzucchelli L., Frattini M., Siena S., Bardelli A. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer // J. Clin. Oncol. 2008. Vol. 26 (35). P. 5705–5712. doi: 10.1200/JCO.2008.18.0786.
9. Jakovljevic K., Malisic E., Cavic M., Krivokuca A., Dobricic J., Jankovic R. KRAS and BRAF mutations in Serbian patients with colorectal cancer // J. BUON. 2012. Vol. 17 (3). P. 575–580.
10. Jancik S., Drabek J., Berkovcova J., Xu Y.Z., Stankova M., Klein J., Kolek V., Skarda J., Tichy T., Grygarkova I., Radzioch D., Hajduch M. A comparison of Direct sequencing, Pyrosequencing, High resolution melting analysis, TheraScreen DxS, and the K-ras StripAssay for detecting KRAS mutations in non small cell lung carcinomas // J. Exp. Clin. Cancer Res. 2012. Vol. 31. P. 79. doi: 10.1186/1756-9966-31-79.
11. Jean G.W., Shah S.R. Epidermal growth factor receptor monoclonal antibodies for the treatment of metastatic colorectal cancer // Pharmacotherapy. 2008. Vol. 28 (6). P. 742–754. doi: 10.1592/phco.28.6.742.
12. Laurent-Puig P., Cayre A., Manceau G., Buc E., Bachet J.B., Lecomte T., Rougier P., Lievre A., Landi B., Boige V., Ducreux M., Ychou M., Bibeau F., Bouché O., Reid J., Stone S., Penault-Llorca F. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer // J. Clin. Oncol. 2009. Vol. 27 (35). P. 5924–5930. doi: 10.1200/JCO.2008.21.6796.
13. Lièvre A., Bachet J.B., Le Corre D., Boige V., Landi B., Emile J.F., Côté J.F., Tomasic G., Penna C., Ducreux M., Rougier P., Penault-Llorca F., Laurent-Puig P. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer // Cancer Res. 2006. Vol. 66 (8). P. 3992–3995.
14. Milbury C.A., Li J., Makrigiorgos G.M. PCR-based methods for the enrichment of minority alleles and mutations // Clin. Chem. 2009. Vol. 55 (4). P. 632–640. doi: 10.1373/clinchem.2008.113035.
15. Pisareva E., Gutkina N., Kovalenko S., Kuehnapfel S., Hartmann A., Heinzerling L., Schneider-Stock R., Lyubchenko L., Shamanin V.A. Sensitive allele-specific real-time PCR test for mutations in BRAF codon V600 in skin melanoma // Melanoma Res. 2014. Vol. 24 (4). P. 322–331. doi: 10.1097/CMR.0000000000000090.
16. Porebska I., Harlozińska A., Bojarowski T. Expression of the tyrosine kinase activity growth factor receptors (EGFR., ERB B2., ERB B3) in colorectal adenocarcinomas and adenomas // Tumour Biol. 2000. Vol. 21 (2). P. 105–115.
17. Samowitz W.S., Sweeney C., Herrick J., Albertsen H., Levin T.R., Murtaugh M.A., Wolff R.K., Slattery M.L. Poor Survival Associated with the BRAF V600E Mutation in Microsatellite-Stable Colon Cancers // Cancer Res. 2005. Vol. 65 (14). P. 6063–6069.
18. Tsiatis A.C., Norris-Kirby A., Rich R.G., Hafez M.J., Gocke C.D., Eshleman J.R., Murphy K.M. Comparison of Sanger sequencing., pyrosequencing., and melting curve analysis for the detection of KRAS mutations: diagnostic and clinical implications // J. Mol. Diagn. 2010. Vol. 12 (4). P. 425–432. doi: 10.2353/jmoldx.2010.090188.
19. van Krieken J.H., Jung A., Kirchner T., Carneiro F., Seruca R., Bosman F.T., Quirke P., Fléjou J.F., Plato Hansen T., de Hertogh G., Jares P., Langner C., Hoefler G., Ligtenberg M., Tiniakos D., Tejpar S., Bevilacqua G., Ensari A. KRAS mutation testing for predicting response to anti-EGFR therapy for colorectal carcinoma: proposal for an European quality assurance program // Virchows Arch. 2008. Vol. 453 (5). P. 417–431. doi: 10.1007/s00428-008-0665-y.
20. Wang D., Liang W., Duan X., Liu L., Shen H., Peng Y., Li B. Detection of KRAS gene mutations in colorectal carcinoma: a study of 6 364 patients // Zhonghua Bing Li Xue Za Zhi. 2014. Vol. 43 (9). P. 583–587.
21. Yanus G.A., Belyaeva A.V., Ivantsov A.O., Kuligina E.Sh., Suspitsin E.N., Mitiushkina N.V., Aleksakhina S.N., Iyevleva A.G., Zaitseva O.A., Yatsuk O.S., Gorodnova T.V., Strelkova T.N., Efremova S.A., Lepenchuk A.Y., Ochir-Garyaev A.N., Paneyah M.B., Matsko D.E., Togo A.V., Imyanitov E.N. Pattern of clinically relevant mutations in consecutive series of Russian colorectal cancer patients // Med. Oncol. 2013. Vol. 30 (3). P. 686. doi: 10.1007/s12032-013-0686-5.
Review
For citations:
Pisareva E.E., Ljubchenko L.N., Kovalenko S.P., Shamanin V.A. ANALYSIS OF MUTATIONS IN KRAS AND BRAF GENES IN COLORECTAL CANCER IN RUSSIAN PATIENTS. Siberian journal of oncology. 2016;15(2):36-41. (In Russ.) https://doi.org/10.21294/1814-4861-2016-15-2-36-41