Preview

Siberian journal of oncology

Advanced search

snoRNA box C/D levels in leukemia cells in chromosomal abnormalities after irradiation

https://doi.org/10.21294/1814-4861-2024-23-6-97-106

Abstract

The study objective. This paper reviews the express of C/D box snoRNAs (small nucleolar RNAs) and possibility of their use as biomarkers of radioresistance in chromosomal abnormalities. Material and Methods. The study compared the values of log2FC express of snoRNA C/Dbox in radiosensitive (HL-60) and radioresistant (K562) cell lines with different levels of chromosomal abnormalities. The cells were irradiated with X-ray radiation once at a dose of 4 Gy. The expression of snoRNA C/D was evaluated 1, 4 and 24 hours after irradiation, using new generation sequencing (NGS) MiSeq. Results. Different log2FC values were obtained in HL-60 and K562 cell lines 1 hour, 4 and 24 hours after irradiation. Positive expression of C/D snoRNA prevails in HL-60 throughout the experiment. In K562, the predominance of positive values of C/D snoRNA expression was observed 4 hours after irradiation, and negative values of log2FC were observed 24 hours later. the more anomalies there were in the chromosome, the greater the difference in expression we observed. at the same time, the number of C/D snoRNA changed maximally 24 hours after irradiation in the studied cell lines. We noted a greater number of C/D snoRNAs in the HL-60 cell line, and only 3 expressed C/D snoRNAs in the 15th marker chromosome in K562 out of 16 in HL-60 in the same chromosome. Conclusion. Our study showed a low informative value of using C/D snoRNAs family as markers of radiosensitivity in the presence of chromosomal abnormalities in cancer cells.

About the Authors

E. V. Rastorgueva
Ulyanovsk State University
Russian Federation

Evgenia V. Rastorgueva - Junior Researcher, S.P. Kapitsa National Research Institute of Technology, Ulyanovsk State University.

42, Leo Tolstoy St., Ulyanovsk, 432017

Researcher ID (WOS) F-9859-2019, Author ID (Scopus) 36137821200



E. S. Pogodina
Ulyanovsk State University
Russian Federation

Evgenia S. Pogodina - PhD, Researcher, S.P. Kapitsa National Research Institute of Technology, Ulyanovsk State University.

42, Leo Tolstoy St., Ulyanovsk, 432017

Researcher ID (WOS) E-9244-2014, Author ID (Scopus) 57194655594



E. V. Iurova
Ulyanovsk State University
Russian Federation

Elena V. Iurova - Junior Researcher, S.P. Kapitsa National Research Institute of Technology, Ulyanovsk State University.

42, Leo Tolstoy St., Ulyanovsk, 432017

Researcher ID (WOS) D-6956-2017, Author ID (Scopus) 57219328888



E. A. Beloborodov
Ulyanovsk State University
Russian Federation

Evgeniy A. Beloborodov - Postgraduate, Researcher, S.P. Kapitsa National Research Institute of Technology, Ulyanovsk State University.

42, Leo Tolstoy St., Ulyanovsk, 432017

Researcher ID (WOS) E-8072-2017, Author ID (Scopus) 57194654215



D. E. Sugak
Ulyanovsk State University
Russian Federation

Dmitry E. Sugak - Junior Researcher, S.P. Kapitsa National Research Institute of Technology, Ulyanovsk State University.

42, Leo Tolstoy St., Ulyanovsk, 432017



I. A. Tumozov
Ulyanovsk State University
Russian Federation

Ivan A. Tumozov - Research Intern, S.P. Kapitsa National Research Institute of Technology, Ulyanovsk State University.

42, Leo Tolstoy St., Ulyanovsk, 432017



Yu. V. Saenko
Ulyanovsk State University
Russian Federation

Yuri V. Saenko - DSc, Professor, Leading Researcher, S.P. Kapitsa National Research Institute of Technology, Ulyanovsk State University.

42, Leo Tolstoy St., Ulyanovsk, 432017

Researcher ID (WOS) D-9789-2014, Author ID (Scopus) 10440760400



A. Ni. Fomin
Ulyanovsk State University
Russian Federation

Alexander N. Fomin - PhD, Director, Senior Researcher, S.P. Kapitsa National Research Institute of Technology, Ulyanovsk State University.

42, Leo Tolstoy St., Ulyanovsk, 432017

Author ID (Scopus) 56973686300



References

1. Coley A.B., DeMeis J.D., Chaudhary N.Y., Borchert G.M. Small Nucleolar Derived RNAs as Regulators of Human Cancer. Biomedicines. 2022; 10(8): 1819. doi: 10.3390/biomedicines10081819.

2. Maxwell E.S., Fournier M.J. The Small Nucleolar RNAs. Ann. Rev. Biochem. 1995; 64(1): 897–934. doi: 10.1146/annurev.bi.64.070195.004341.

3. Terns M.P., Terns R.M. Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin. Gene Expr. 2002; 10(1–2): 17–39.

4. Deschamps-Francoeur G., Couture S., Abou-Elela S., Scott M.S. The snoGloBe interaction predictor reveals a broad spectrum of C/D snoRNA RNA targets. Nucleic Acids Res. 2022; 50(11): 6067–83. doi: 10.1093/nar/gkac475.

5. Baldini L., Charpentier B., Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D SnoRNAs. Noncoding RNA. 2021; 7(2): 30. doi: 10.3390/ncrna7020030.

6. Ono M., Scott M.S., Yamada K., Avolio F., Barton G.J., Lamond A.I. Identification of human miRNA precursors that resemble box C/D snoRNAs. Nucleic Acids Res. 2011; 39(9): 3879–91. doi: 10.1093/nar/gkq1355.

7. Scott M.S., Avolio F., Ono M., Lamond A.I., Barton G.J. Human MiRNA Precursors with Box H/ACA SnoRNA Features. PLoS Comput Biol. 2009; 5(9). doi: 10.1371/journal.pcbi.1000507.

8. Dong J., Wang H., Zhang Z., Yang L., Qian X., Qian W., Han Y., Huang H., Qian P. Small but strong: Pivotal roles and potential applications of snoRNAs in hematopoietic malignancies. Front Oncol. 2022; 12. doi: 10.3389/fonc.2022.939465.

9. Mei Y.P., Liao J.P., Shen J., Yu L., Liu B.L., Liu L., Li R.Y., Ji L., Dorsey S.G., Jiang Z.R., Katz R.L., Wang J.Y., Jiang F. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 2012; 31(22): 2794–804. doi: 10.1038/onc.2011.449.

10. Nachmani D., Bothmer A.H., Grisendi S., Mele A., Bothmer D., Lee J.D., Monteleone E., Cheng K., Zhang Y., Bester A.C., Guzzetti A., Mitchell C.A., Mendez L.M., Pozdnyakova O., Sportoletti P., Martelli M.P., Vulliamy T.J., Safra M., Schwartz S., Luzzatto L., Bluteau O., Soulier J., Darnell R.B., Falini B., Dokal I., Ito K., Clohessy J.G., Pandolfi P.P. Germline NPM1 mutations lead to altered rRNA 2’-O-methylation and cause dyskeratosis congenita. Nat Genet. 2019; 51(10): 1518–29. doi: 10.1038/s41588-019-0502-z.

11. Oliveira V., Mahajan N., Bates M.L., Tripathi C., Kim K.Q., Zaher H.S., Maggi L.B. Jr, Tomasson M.H. The snoRNA target of t(4;14) in multiple myeloma regulates ribosome biogenesis. FASEB Bioadv. 2019; 1(7): 404–14. doi: 10.1096/fba.2018-00075.

12. Ronchetti D., Todoerti K., Tuana G., Agnelli L., Mosca L., Lionetti M., Fabris S., Colapietro P., Miozzo M., Ferrarini M., Tassone P., Neri A. The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma. Blood Cancer J. 2012; 2(11). doi: 10.1038/bcj.2012.41.

13. Zhou F., Liu Y., Rohde C., Pauli C., Gerloff D., Köhn M., Misiak D., Bäumer N., Cui C., Göllner S., Oellerich T., Serve H., Garcia-Cuellar M.P., Slany R., Maciejewski J.P., Przychodzen B., Seliger B., Klein H.U., Bartenhagen C., Berdel W.E., Dugas M., Taketo M.M., Farouq D., Schwartz S., Regev A., Hébert J., Sauvageau G., Pabst C., Hüttelmaier S., Müller-Tidow C. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol. 2017; 19(7): 844–55. doi: 10.1038/ncb3563.

14. May J.M., Bylicky M., Chopra S., Coleman C.N., Aryankalayil M.J. Long and short non-coding RNA and radiation response: a review. Transl Res. 2021; 233: 162–79. doi: 10.1016/j.trsl.2021.02.005.

15. Li Y., Ma X., Li J., He S., Zhuang J., Wang G., Ye Y., Xia W. LncRNA Gas5 Regulates Granulosa Cell Apoptosis and Viability Following Radiation by X-Ray via Sponging MiR-205-5p and Wnt/β-Catenin Signaling Pathway in Granulosa Cell Tumor of Ovary. Trop J Pharm Res. 2020; 19(6): 1153–59.

16. Gao J., Liu L., Li G., Cai M., Tan C., Han X., Han L. LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis. Int J Biol Macromol. 2019; 126: 994–1001. doi: 10.1016/j.ijbiomac.2018.12.176.

17. Weidhaas J.B., Babar I., Nallur S.M., Trang P., Roush S., Boehm M., Gillespie E., Slack F.J. MicroRNAs as potential agents to alter resistance to cytotoxic anticancer therapy. Cancer Res. 2007; 67(23): 11111–16. doi: 10.1158/0008-5472.CAN-07-2858.

18. Zhang H., Fang C., Feng Z., Xia T., Lu L., Luo M., Chen Y., Liu Y. and Li Y. The Role of LncRNAs in the Regulation of Radiotherapy Sensitivity in Cervical Cancer. Front. Oncol. 2022; 12. doi: 10.3389/fonc.2022.896840.

19. Ebahimzadeh K., Shoorei H., Mousavinejad S.A., Anamag F.T., Dinger M.E., Taheri M., Ghafouri-Fard S. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy. Pathol Res Pract. 2021; 218. doi: 10.1016/j.prp.2020.153327.

20. Xiao J., He X. Involvement of Non-Coding RNAs in Chemo- and Radioresistance of Nasopharyngeal Carcinoma. Cancer Manag Res. 2021; 13: 8781–94. doi: 10.2147/CMAR.S336265.

21. Tian Y., Tang L., Yi P., Pan Q., Han Y., Shi Y., Rao S., Tan S., Xia L., Lin J., Oyang L., Tang Y., Liang J., Luo X., Liao Q., Wang H., Zhou Y. MiRNAs in Radiotherapy Resistance of Nasopharyngeal Carcinoma. J Cancer. 2020; 11(13): 3976–85. doi: 10.7150/jca.42734.

22. Masoudi-Khoram N., Abdolmaleki P. Role of non-coding RNAs in response of breast cancer to radiation therapy. Mol Biol Rep. 2022; 49(6): 5199–208. doi: 10.1007/s11033-022-07234-2.

23. Li Z., Wang F., Zhu Y., Guo T., Lin M. Long Noncoding RNAs Regulate the Radioresistance of Breast Cancer. Anal Cell Pathol (Amst). 2021. doi: 10.1155/2021/9005073.

24. Zhang S., Wang B., Xiao H., Dong J., Li Y., Zhu C., Jin Y., Li H., Cui M., Fan S. LncRNA HOTAIR enhances breast cancer radioresistance through facilitating HSPA1A expression via sequestering miR-449b-5p. Thorac Cancer. 2020; 11(7): 1801–16. doi: 10.1111/1759-7714.13450.

25. Rastorgueva E., Liamina D., Panchenko I., Iurova E., Beloborodov E., Pogodina E., Sugak D., Slesarev S., Saenko Y. The effect of chromosome abnormalities on expression of SnoRNA in radioresistant and radiosensitive cell lines after irradiation. Cancer Biomark. 2022; 34(4): 545–53. doi: 10.3233/CBM-210092.

26. Liamina D., Sibirnyj W., Khokhlova A., Saenko V., Rastorgueva E., Fomin A., Saenko Y. Radiation-Induced Changes of microRNA Expression Profiles in Radiosensitive and Radioresistant Leukemia Cell Lines with Different Levels of Chromosome Abnormalities. Cancers (Basel). 2017; 9(10): 136. doi: 10.3390/cancers9100136.

27. Rastorgueva E.V., Pogodina E.S., Yurova E.V., Beloborodov E.A., Sugak D.E., Saenko Yu.V., Fomin A.N. Expression of H/ACA snoRna in cell lines with chromosomal abnormalities after irradiation. Ulyanovsk Medico-Biological Journal. 2022; (4): 149–59. (in Russian). doi: 10.34014/2227-1848-2022-4-149-159.

28. Liang J.C., Ning Y., Wang R.Y., Padilla-Nash H.M., Schröck E., Soenksen D., Nagarajan L., Ried T. Spectral karyotypic study of the HL-60 cell line: detection of complex rearrangements involving chromosomes 5, 7, and 16 and delineation of critical region of deletion on 5q31.1. Cancer Genet Cytogenet. 1999; 113(2): 105–9. doi: 10.1016/s0165-4608(99)00030-8.

29. Lafontaine D.L., Tollervey D. Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. Trends Biochem Sci. 1998; 23(10): 383–8. doi: 10.1016/s0968-0004(98)01260-2.

30. Naumann S., Reutzel D., Speicher M., Decker H.J. Complete karyotype characterization of the K562 cell line by combined application of G-banding, multiplex-fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization. Leuk Res. 2001; 25(4): 313–22. doi: 10.1016/s0145-2126(00)00125-9.

31. Wang Y., Han Y., Jin Y., He Q., Wang Z. The Advances in Epigenetics for Cancer Radiotherapy. Int J Mol Sci. 2022; 23(10): 5654. doi: 10.3390/ijms23105654.

32. Brooks W.H., Renaudineau Y. Epigenetics and autoimmune diseases: the X chromosome-nucleolus nexus. Front Genet. 2015; 6: 22. doi: 10.3389/fgene.2015.00022.

33. Peitzsch C., Cojoc M., Hein L., Kurth I., Mäbert K., Trautmann F., Klink B., Schröck E., Wirth M.P., Krause M., Stakhovsky E.A., Telegeev G.D., Novotny V., Toma M., Muders M., Baretton G.B., Frame F.M., Maitland N.J., Baumann M., Dubrovska A. An Epigenetic Reprogramming Strategy to Resensitize Radioresistant Prostate Cancer Cells. Cancer Res. 2016; 76(9): 2637–51. doi: 10.1158/0008-5472.CAN-15-2116.


Review

For citations:


Rastorgueva E.V., Pogodina E.S., Iurova E.V., Beloborodov E.A., Sugak D.E., Tumozov I.A., Saenko Yu.V., Fomin A.N. snoRNA box C/D levels in leukemia cells in chromosomal abnormalities after irradiation. Siberian journal of oncology. 2024;23(6):97-106. (In Russ.) https://doi.org/10.21294/1814-4861-2024-23-6-97-106

Views: 782


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)