Preview

Siberian journal of oncology

Advanced search

Relationship between DLK-1 levels in blood serum and survival of patients with glioblastoma

https://doi.org/10.21294/1814-4861-2024-23-6-41-50

Abstract

Several studies have shown that the increased expression of delta–like noncanonical Notch ligand 1 (DLK-1) is associated with more aggressive tumor characteristics in patients with glioblastoma. The aim of the study was to estimate the diagnostic and prognostic values of DLK-1 serum levels in glioblastoma patients. Material and Methods. The study included 39 patients with newly diagnosed glioblastoma. The DLK-1 level was evaluated in paired serum and cerebrospinal fluid samples in glioblastoma patients before starting chemoradiotherapy (CRT). All patients with glioblastoma received combined modality treatment. The DLK-1 level in blood serum was additionally assessed during follow-up visits. Results. The median levels of DLK-1 in paired CSF and serum samples before CRT were 1.17 ng/ml (95 % CI 0.78; 2.89) and 0.27 ng/ml (95 % CI 0.26; 0.29), respectively (p=0.006). The assessment of the DLK-1 serum level in glioblastoma patients didn’t show any significant differences related to the response to therapy. In patients with tumor progression after CRT, the median serum DLK-1 level before CRT was 0.43 ng/ml, and in patients with stable disease, the median serum level was 1.7 ng/ml (p=0.012). The DLK-1 serum levels were 1.60 ng/ml and 0.32 ng/ml in patients with favorable prognosis for progression–free survival and in patients with unfavorable prognosis, respectively (p=0.005). The median concentrations of DLK-1 in serum before starting CRT were 1.01 ng/ml and 0.32 ng/ml in patients with favorable prognosis of overall survival and in patients with unfavorable prognosis, respectively (p=0.04). The DLK-1 levels in 4 weeks after CRT were 1.53 ng/ml and 0.23 ng/ml in patients with favorable prognosis of overall survival and in patients with the unfavorable prognosis, respectively (p=0.04). Conclusion. The DLK-1 serum level in patients with glioblastoma cannot be used to diagnose disease progression. However, this marker is a prognostic factor for overall and progression-free survival, and allows identification of patients with favorable and unfavorable prognosis.

About the Authors

A. I. Ryabova
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Anastasiya I. Ryabova - MD, PhD, Researcher, Department of Head and Neck Tumors, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences.

5, Kooperativny St., Tomsk, 634009

Researcher ID (WOS) D-1138-2012, Author ID (Scopus) 57190937361



V. A. Novikov
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University of the Ministry of Health of Russia
Russian Federation

Valery A. Novikov - MD, DSc, Leading Researcher, Department of Head and Neck Tumors, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Associate Professor, Department of Oncology, Siberian State Medical University of the Ministry of Health of Russia.

5, Kooperativny St., Tomsk, 634009; 2, Moskovsky Trakt, Tomsk, 634050

Researcher ID (WOS) D-9057-2012, Author ID (Scopus) 7402005343



L. V. Spirina
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University of the Ministry of Health of Russia
Russian Federation

Lyudmila V. Spirina - MD, DSc, Leading Researcher, Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Head of the Department of Biochemistry and Molecular Biology with a course in clinical laboratory diagnostics, Siberian State Medical University of the Ministry of Health of Russia.

5, Kooperativny St., Tomsk, 634009; 2, Moskovsky Trakt, Tomsk, 634050

Researcher ID (WOS) A-7760-2012, Author ID (Scopus) 36960462500



A. B. Dospan
Siberian State Medical University of the Ministry of Health of Russia
Russian Federation

Aziyana B. Dospan - Resident, Department of Biochemistry and Molecular Biology with course of clinical laboratory diagnostics, Siberian State Medical University of the Ministry of Health of Russia.

2, Moskovsky trakt, Tomsk, 634050



E. L. Choynzonov
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Siberian State Medical University of the Ministry of Health of Russia
Russian Federation

Evgeny L. Choynzonov - MD, DSc, Professor, Academician of the Russian Academy of Sciences, Director, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences; Head of the Department of Oncology, Siberian State Medical University of the Ministry of Health of Russia.

5, Kooperativny St., Tomsk, 634009; 2, Moskovsky Trakt, Tomsk, 634050

Researcher ID (WOS) P-1470-2014, Author ID (Scopus) 6603352329



O. V. Gribova
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Olga V. Gribova - MD, DSc, Senior Researcher, Department of Radiotherapy, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences.

5, Kooperativny St., Tomsk, 634009

Researcher ID (WOS) D-7796-2012, Author ID (Scopus) 55917908000



O. A. Muzenik
Tomsk Regional Clinical Hospital
Russian Federation

Oleg A. Muzenik - MD, Neurosurgeon, Tomsk Regional Clinical Hospital.

96, I. Chernykh St., Tomsk, 634063



V. A. Syrkashev
Siberian State Medical University of the Ministry of Health of Russia
Russian Federation

Vladimir A. Syrkashev - MD, PhD, Associate Professor, Department of Neurology and Neurosurgery, Siberian State Medical University of the Ministry of Health of Russia.

2, Moskovsky trakt, Tomsk, 634050

Researcher ID (WOS) S-6110-2016



S. A. Glushchenko
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Svetlana A. Glushchenko - MD, PhD, Pathologist, Department of Pathomorphology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences.

5, Kooperativny St., Tomsk, 634009

Researcher ID (WOS) D-2336-2012



S. A. Tabakaev
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Stanislav A. Tabakaev - MD, PhD, Junior Researcher, Diagnostic Imaging Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences.

5, Kooperativny St., Tomsk, 634009

Researcher ID (WOS) AAY-3354-2021, Author ID (Scopus) 57214091193



I. N. Udintseva
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Irina N. Udintseva - MD, PhD, Neurologist, General Clinical Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences.

5, Kooperativny St., Tomsk, 634009

Researcher ID (WOS) L-7447-2018, Author ID (Scopus) 55619071000



References

1. Ostrom Q.T., Liao P., Stetson L.C., Barnholtz-Sloan J.S. Epidemiology of glioblastoma and trends in glioblastoma survivorship. Glioblastoma. Elsevier Inc., 2016. P. 11–19.

2. Ostrom Q.T., Price M., Neff C., Cioffi G., Waite K.A., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016-2020. Neuro Oncol. 2023; 25(12s2): 1–99. doi: 10.1093/neuonc/noad149.

3. Weller M., van den Bent M., Preusser M., Le Rhun E., Tonn J.C., Minniti G., Bendszus M., Balana C., Chinot O., Dirven L., French P., Hegi M.E., Jakola A.S., Platten M., Roth P., Rudà R., Short S., Smits M., Taphoorn M.J.B., von Deimling A., Westphal M., Soffietti R., Reifenberger G., Wick W. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021; 18(3): 170–86. doi: 10.1038/s41571-020-00447-z. Erratum in: Nat Rev Clin Oncol. 2022; 19(5): 357–58. doi: 10.1038/s41571-022-00623-3.

4. Horbinski C., Nabors L.B., Portnow J., Baehring J., Bhatia A., Bloch O., Brem S., Butowski N., Cannon D.M., Chao S., Chheda M.G., Fabiano A.J., Forsyth P., Gigilio P., Hattangadi-Gluth J., Holdhoff M., Junck L., Kaley T., Merrell R., Mrugala M.M., Nagpal S., Nedzi L.A., Nevel K., Nghiemphu P.L., Parney I., Patel T.R., Peters K., Puduvalli V.K., Rockhill J., Rusthoven C., Shonka N., Swinnen L.J., Weiss S., Wen P.Y., Willmarth N.E., Bergman M.A., Darlow S. NCCN Guidelines® Insights: Central Nervous System Cancers, Version 2.2022. J Natl Compr Canc Netw. 2023; 21(1): 12–20. doi: 10.6004/jnccn.2023.0002.

5. Ulitin A.Yu., Zheludkova O.G., Ivanov P.I., Kobyakov G.L., Matsko M.V., Naskhletashvili D.R., Protsenko S.A., Ryzhova M.V. Practical recommendations for the drug treatment of primary tumours of the central nervous system. Malignant Tumours. 2022; 12(3s2-1): 113–40. (in Russian). doi: 10.18027/2224-5057-2022-12-3s2-113-140.

6. Di Nunno V., Franceschi E., Tosoni A., Di Battista M., Gatto L., Lamperini C., Minichillo S., Mura A., Bartolini S., Brandes A.A. Treatment of recurrent glioblastoma: state-of-the-art and future perspectives. Expert Rev Anticancer Ther. 2020; 20(9): 785–95. doi: 10.1080/14737140.2020.1807949.

7. Chen W., Wang Y., Zhao B., Liu P., Liu L., Wang Y., Ma W. Optimal Therapies for Recurrent Glioblastoma: A Bayesian Network Meta-Analysis. Front Oncol. 2021; 11. doi: 10.3389/fonc.2021.641878.

8. Wen P.Y., Macdonald D.R., Reardon D.A., Cloughesy T.F., Sorensen A.G., Galanis E., Degroot J., Wick W., Gilbert M.R., Lassman A.B., Tsien C., Mikkelsen T., Wong E.T., Chamberlain M.C., Stupp R., Lamborn K.R., Vogelbaum M.A., van den Bent M.J., Chang S.M. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010; 28(11): 1963–72. doi: 10.1200/JCO.2009.26.3541.

9. van Dijken B.R.J., van Laar P.J., Holtman G.A., van der Hoorn A. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiol. 2017; 27(10): 4129–44. doi: 10.1007/s00330-017-4789-9.

10. Pittaway J.F.H., Lipsos C., Mariniello K., Guasti L. The role of delta-like non-canonical Notch ligand 1 (DLK1) in cancer. Endocr Relat Cancer. 2021; 28(12): 271–87. doi: 10.1530/ERC-21-0208.

11. Grassi E.S., Pietras A. Emerging Roles of DLK1 in the Stem Cell Niche and Cancer Stemness. J Histochem Cytochem. 2022; 70(1): 17–28. doi: 10.1369/00221554211048951.

12. Ferrón S.R., Charalambous M., Radford E., McEwen K., Wildner H., Hind E., Morante-Redolat J.M., Laborda J., Guillemot F., Bauer S.R., Fariñas I., Ferguson-Smith A.C. Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature. 2011; 475(7356): 381–5. doi: 10.1038/nature10229.

13. Grassi E.S., Pantazopoulou V., Pietras A. Hypoxia-induced release, nuclear translocation, and signaling activity of a DLK1 intracellular fragment in glioma. Oncogene. 2020; 39(20): 4028–44. doi: 10.1038/s41388-020-1273-9.

14. Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., Figarella-Branger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; 23(8): 1231–51. doi: 10.1093/neuonc/noab106.

15. Abbasi A.W., Westerlaan H.E., Holtman G.A., Aden K.M., van Laar P.J., van der Hoorn A. Incidence of Tumour Progression and Pseudoprogression in High-Grade Gliomas: a Systematic Review and Meta-Analysis. Clin Neuroradiol. 2018; 28(3): 401–11. doi: 10.1007/s00062-017-0584-x.

16. Brandes A.A., Franceschi E., Tosoni A., Blatt V., Pession A., Tallini G., Bertorelle R., Bartolini S., Calbucci F., Andreoli A., Frezza G., Leonardi M., Spagnolli F., Ermani M. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008; 26(13): 2192–7. doi: 10.1200/JCO.2007.14.8163.

17. Ryabova A.I., Novikov V.A., Choynzonov E.L., Spirina L.V., Yunusova N.V., Ponomareva A.A., Tamkovich S.N., Gribova O.V. The role of liquid biopsy in the diagnosis of glioblastoma progression. Siberian Journal of Oncology. 2022; 21(3): 104–16. (in Russian). doi: 10.21294/1814-4861-2022-21-3-104-116.

18. Traustadóttir G.Á., Lagoni L.V., Ankerstjerne L.B.S., Bisgaard H.C., Jensen C.H., Andersen D.C. The imprinted gene Delta like non-canonical Notch ligand 1 (Dlk1) is conserved in mammals, and serves a growth modulatory role during tissue development and regeneration through Notch dependent and independent mechanisms. Cytokine Growth Factor Rev. 2019; 46: 17–27. doi: 10.1016/j.cytogfr.2019.03.006.

19. Grassi E.S., Jeannot P., Pantazopoulou V., Berg T.J., Pietras A. Niche-derived soluble DLK1 promotes glioma growth. Neoplasia. 2020; 22(12): 689–701. doi: 10.1016/j.neo.2020.10.005.

20. Jin Z.H., Yang R.J., Dong B., Xing B.C. Progenitor gene DLK1 might be an independent prognostic factor of liver cancer. Expert Opin Biol Ther. 2008; 8(4): 371–7. doi: 10.1517/14712598.8.4.371.

21. Yin D., Xie D., Sakajiri S., Miller C.W., Zhu H., Popoviciu M.L., Said J.W., Black K.L., Koeffler H.P. DLK1: increased expression in gliomas and associated with oncogenic activities. Oncogene. 2006; 25(13): 1852–61. doi: 10.1038/sj.onc.1209219.

22. Takagi H., Zhao S., Muto S., Yokouchi H., Nishihara H., Harada T., Yamaguchi H., Mine H., Watanabe M., Ozaki Y., Inoue T., Yamaura T., Fukuhara M., Okabe N., Matsumura Y., Hasegawa T., Osugi J., Hoshino M., Higuchi M., Shio Y., Kanno R., Aoki M., Tan C., Shimoyama S., Yamazaki S., Kikuchi H., Sakakibara-Konishi J., Oizumi S., Harada M., Akie K., Sugaya F., Fujita Y., Takamura K., Kojima T., Honjo O., Minami Y., Nishimura M., Dosaka-Akita H., Nakamura K., Inano A., Isobe H., Suzuki H. Delta-like 1 homolog (DLK1) as a possible therapeutic target and its application to radioimmunotherapy using 125I-labelled anti-DLK1 antibody in lung cancer models (HOT1801 and FIGHT004). Lung Cancer. 2021; 153: 134–42. doi: 10.1016/j.lungcan.2021.01.014.

23. Xu J., Wang M., Zhang Z., Zhao W., Wang C., Tu L., Zhang Y., Cao H. Prognostic values of DLK1 for surgery and imatinib mesylate adjuvant therapy in gastrointestinal stromal tumors. Am J Cancer Res. 2016; 6(11): 2700–12.

24. Huang C.C., Cheng S.H., Wu C.H., Li W.Y., Wang J.S., Kung M.L., Chu T.H., Huang S.T., Feng C.T., Huang S.C., Tai M.H. Delta-like 1 homologue promotes tumorigenesis and epithelial-mesenchymal transition of ovarian high-grade serous carcinoma through activation of Notch signaling. Oncogene. 2019; 38(17): 3201–15. doi: 10.1038/s41388-018-0658-5.


Review

For citations:


Ryabova A.I., Novikov V.A., Spirina L.V., Dospan A.B., Choynzonov E.L., Gribova O.V., Muzenik O.A., Syrkashev V.A., Glushchenko S.A., Tabakaev S.A., Udintseva I.N. Relationship between DLK-1 levels in blood serum and survival of patients with glioblastoma. Siberian journal of oncology. 2024;23(6):41-50. (In Russ.) https://doi.org/10.21294/1814-4861-2024-23-6-41-50

Views: 827


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)