Preview

Siberian journal of oncology

Advanced search

Features of intestinal microbiota composition in cancer patients

https://doi.org/10.21294/1814-4861-2024-23-6-51-61

Abstract

Objective: to evaluate and compare the qualitative and quantitative composition of the intestinal microbiota in patients with malignant neoplasms of various localizations. Material and Methods. The study included patients who received different types of treatment in N.N. Blokhin Oncology Research Center, Moscow, Russia in 2023 for gastric cancer, including cardioesophageal adenocarcinoma (group 1), esophageal squamous cell carcinoma (group 2) and metastatic or locally advanced melanoma of the skin (group 3). All patients had to have morphologic verification of the diagnosis at the time of inclusion, be over 18 years old, have an ECOG performance status of ≤1, and have no evidence of intestinal infection, as well as not take antibiotics within 28 days prior to entry into the study. Stool samples were collected during patients’ hospitalization. The quantitative and qualitative composition of microorganisms of 17 taxonomic groups was evaluated. Microorganisms were cultured according to standard microbiological methods, taking into account the growth conditions of a particular group of microorganisms. Species identification of microbial isolates was obtained by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF) and MALDI Biotyper v.3.0 software (Bruker daltonics, Germany). Descriptive statistics methods from the SPSS Statistics, v.27 software package were used. To quantitatively describe the species diversity of the gut microbiota, calculations were performed using the Margalef species richness index (d) and Shannon’s (H) diversity index. The criterion of uniformity of microbial species distribution according to their abundance in the population community was evaluated using the Pielow index (E). The Hutcheson’s T-criterion was used to test the significance of differences between sample sets of Shannon index values and to obtain statistically correct estimates of differences (p≤0.05). Results. A total of 63 samples of biological material (feces) were investigated. A change in the quantitative composition of intestinal microbiota in all study groups was found, which may have a negative impact on the general condition of the patient and the effectiveness of antitumor treatment. The increase in the proportion of Proteobacteria (Enterobacterales) can be considered as a risk factor for the development of infectious complications caused by Gram-negative microorganisms. The analysis of factors influencing the taxonomic diversity of intestinal microbiota revealed no significant differences in the composition of intestinal microbiota between the groups of patients with malignant tumors of different nosological forms (p>0.05). 

About the Authors

V. V. Aginova
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

Victoriya V. Aginova - PhD, Head of the Educational Part, Department of Postgraduate Education for Physicians, Senior Researcher, Bacteriological Laboratory, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia.

23, Kashirskoye Shosse, Moscow, 115522

Author ID (Scopus) 57200537400, Researcher ID (WOS) ААЕ-9570-2022



Z. V. Grigorievskaya
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

Zlata V. Grigorievskaya - MD, DSc, Professor, Department of Postgraduate Education for Physicians, Head of the Bacteriological Laboratory, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia.

23, Kashirskoye Shosse, Moscow, 115522

Author ID (Scopus) 57200538935



I. N. Petukhova
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

Irina N. Petukhova - MD, DSc, Professor, Department of Postgraduate Education for Physicians, Leading Researcher, Bacteriological Laboratory, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia.

23, Kashirskoye Shosse, Moscow, 115522

Author ID (Scopus) 6701329760, Researcher ID (WOS) В-3999-2019



N. S. Bagirova
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia; Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia
Russian Federation

Natalia S. Bagirova - MD, DSC, Professor, Department of Medical Microbiology, Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia; Senior Researcher, Bacteriological Laboratory, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia.

23, Kashirskoye Shosse, Moscow, 115522; 2/1, Build. 1, Barrikadnaya St., Moscow, 123242

Author ID (Scopus) 6603332319, Researcher ID (WOS) AAJ-4392-2021



I. V. Tereshchenko
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

Inna V. Tereshchenko - Researcher, Bacteriological Laboratory, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia.

23, Kashirskoye Shosse, Moscow, 115522

Author ID (Scopus) 57193277015



I. V. Samoylenko
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

Igor V. Samoylenko - MD, PhD, Senior Researcher, Department of Skin Tumors, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia.

23, Kashirskoye Shosse, Moscow, 115522

Author ID (Scopus) 57206666589, Researcher ID (WOS) AAQ- 2321-2020



A. O. Kuzmenko
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

Angelina O. Kuzmenko - Postgraduate, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia.

23, Kashirskoye Shosse, Moscow, 115522

Researcher ID (WOS) КИБ-2272-2024



P. V. Kononets
N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia
Russian Federation

Pavel V. Kononets - MD, DSc, Professor, Department of Postgraduate Education for Physicians, Director, N.N. Trapeznikov Research Institute of Oncology, N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia.

23, Kashirskoye Shosse, Moscow, 115522

Author ID (Scopus) 15819232900, Researcher ID (WOS) AAK-8213-2021



References

1. Bagheri Z., Moeinzadeh L., Razmkhah M. Roles of Microbiota in Cancer: From Tumor Development to Treatment. J Oncol. 2022. doi: 10.1155/2022/3845104.

2. Kim J., Lee H.K. The Role of Gut Microbiota in Modulating Tumor Growth and Anticancer Agent Efficacy. Mol Cells. 2021; 44(5): 356–62. doi: 10.14348/molcells.2021.0032.

3. Grigorievskaya Z.V., Petukhova I.N., Bagirova N.S., Aginova V.V., Kononets P.V. Role of microbiota in oncogenesis. Siberian Journal of Oncology. 2023; 22(2): 129–42. (in Russian). doi: 10.21294/1814-4861-2023-22-2-129-142.

4. Bagirova N.S., Grigorievskaya Z.V., Tereshchenko I.V., Petukhova I.N., Kazimov A.E., Vinnikova V.D., Vershinskaya V.A. Microbiological and molecular identification of anaerobic component of oral cavity microbiota in patients with oropharyngeal cancer. Clinical Laboratory Diagnostics. 2022; 66(5): 301–8. (in Russian). doi: 10.51620/0869-2084-2022-67-5-301-308.

5. Bagirova N.S., Petukhova I.N., Grigorievskaya Z.V., Sytov A.V., Slukin P.V., Goremykina E.A., Khokhlova O.E., Fursova N.K., Kazimov A.E. Oral microbiota in patients with oropharyngeal cancer with an emphasis on Candida spp. Head and Neck Tumors. 2022; 12(3): 71–85. (in Russian). doi: 10.17650/2222-1468-2022-12-3-71-85.

6. Bhatt A.P., Redinbo M.R., Bultman S.J. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017; 67(4): 326–44. doi: 10.3322/caac.21398.

7. Fan X., Jin Y., Chen G., Ma X., Zhang L. Gut Microbiota Dysbiosis Drives the Development of Colorectal Cancer. Digestion. 2021; 102(4): 508–15. doi: 10.1159/000508328.

8. Collado M.C., Derrien M., Isolauri E., de Vos W.M., Salminen S. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol. 2007; 73(23): 7767–70. doi: 10.1128/AEM.01477-07.

9. Grigorievskaya Z.V., Petukhova I.N., Bagirova N.S., Aginova V.V., Kononets P.V. Role of the microbiota in oncogenesis. Siberian Journal of Oncology. 2023; 22(2): 129–42. (in Russian). doi: 10.21294/1814-4861-2023-22-2-129-142.

10. Dai Z., Zhang J., Wu Q., Chen J., Liu J., Wang L., Chen C., Xu J., Zhang H., Shi C., Li Z., Fang H., Lin C., Tang D., Wang D. The role of microbiota in the development of colorectal cancer. Int J Cancer. 2019; 145(8): 2032–41. doi: 10.1002/ijc.32017.

11. Yu T., Guo F., Yu Y., Sun T., Ma D., Han J., Qian Y., Kryczek I., Sun D., Nagarsheth N., Chen Y., Chen H., Hong J., Zou W., Fang J.Y. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell. 2017; 170(3): 548–63. doi: 10.1016/j.cell.2017.07.008.

12. Yachida S., Mizutani S., Shiroma H., Shiba S., Nakajima T., Sakamoto T., Watanabe H., Masuda K., Nishimoto Y., Kubo M., Hosoda F., Rokutan H., Matsumoto M., Takamaru H., Yamada M., Matsuda T., Iwasaki M., Yamaji T., Yachida T., Soga T., Kurokawa K., Toyoda A., Ogura Y., Hayashi T., Hatakeyama M., Nakagama H., Saito Y., Fukuda S., Shibata T., Yamada T. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat Med. 2019; 25(6): 968–76. doi: 10.1038/s41591-019-0458-7.

13. Liu S., Dai J., Lan X., Fan B., Dong T., Zhang Y., Han M. Intestinal bacteria are potential biomarkers and therapeutic targets for gastric cancer. Microb Pathog. 2021; 151. doi: 10.1016/j.micpath.2021.104747.

14. Sukhina M.A., Stavtsev M.G., Achkasov S.I., Yudin S.M. Characteristics of the intestinal microbiota in patients with colorectal cancer. Coloproctology. 2023; 22(3): 94–103. (in Russian) doi: 10.33878/2073-7556-2023-22-3-94-103.

15. Vadhwana B., Tarazi M., Boshier P.R., Hanna G.B. Evaluation of the Oesophagogastric Cancer-Associated Microbiome: A Systematic Review and Quality Assessment. Cancers (Basel). 2023; 15(10): 2668. doi: 10.3390/cancers15102668.

16. Gopalakrishnan V., Helmink B.A., Spencer C.N., Reuben A., Wargo J.A. The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy. Cancer Cell. 2018; 33(4): 570–80. doi: 10.1016/j.ccell.2018.03.015.

17. Bondarenko V.M., Matsulevich T.V. Intestinal dysbacteriosis as a clinical and laboratory syndrome: current state of the problem. Moscow, 2007. 304 p. (in Russian).

18. Chen D.S., Mellman I. Elements of cancer immunity and the cancer-immune set point. Nature. 2017; 541(7637): 321–30. doi: 10.1038/nature21349.

19. Lapébie P., Lombard V., Drula E., Terrapon N., Henrissat B. Bacteroidetes use thousands of enzyme combinations to break down glycans. Nat Commun. 2019; 10(1): 2043. doi: 10.1038/s41467-019-10068-5.

20. Feng J., Qian Y., Zhou Z., Ertmer S., Vivas E.I., Lan F., Hamilton J.J., Rey F.E., Anantharaman K., Venturelli O.S. Polysaccharide utilization loci in Bacteroides determine population fitness and community-level interactions. Cell Host Microbe. 2022; 30(2): 200–15. doi: 10.1016/j.chom.2021.12.006.

21. Olekhnovich E.I., Ivanov A.B., Babkina A.A., Sokolov A.A., Ulyantsev V.I., Fedorov D.E., Ilina E.N. Consistent Stool Metagenomic Biomarkers Associated with the Response To Melanoma Immunotherapy. mSystems. 2023; 8(2). doi: 10.1128/msystems.01023-22.

22. Bredin P., Naidoo J. The gut microbiome, immune check point inhibition and immune-related adverse events in non-small cell lung cancer. Cancer Metastasis Rev. 2022; 41(2): 347–66. doi: 10.1007/s10555-022-10039-1. Erratum in: Cancer Metastasis Rev. 2024; 43(2): 865. doi: 10.1007/s10555-022-10062-2.

23. Zakharevich N.V., Morozov M.D., Kanaeva V.A., Filippov M.S., Zyubko T.I., Ivanov A.B., Ulyantsev V.I., Klimina K.M., Olekhnovich E.I. Systemic metabolic depletion of gut microbiome undermines responsiveness to melanoma immunotherapy. Life Sci Alliance. 2024; 7(5). doi: 10.26508/lsa.202302480.

24. Sitkin S.I., Vakhitov T.Y., Demyanova E.V. Microbiome, gut dysbiosis and inflammatory bowel disease: That moment when the function is more important than taxonomy. Almanac of Clinical Medicine. 2018; 46(5): 396–425. (in Russian). doi: 10.18786/2072-0505-2018-46-5-396-425.

25. OST 91500.11.0004-2003. Industry standard. Patient management protocol. Intestinal dysbacteriosis (approved by the Order of the Ministry of Health of Russia dated 09.06.2003 No. 231). (in Russian).

26. Zheng Z., Hu Y., Tang J., Xu W., Zhu W., Zhang W. The implication of gut microbiota in recovery from gastrointestinal surgery. Front Cell Infect Microbiol. 2023; 13. doi: 10.3389/fcimb.2023.1110787.

27. Lederer A.K., Chikhladze S., Kohnert E., Huber R., Müller A. Current Insights: The Impact of Gut Microbiota on Postoperative Complications in Visceral Surgery-A Narrative Review. Diagnostics (Basel). 2021; 11(11): 2099. doi: 10.3390/diagnostics11112099.

28. Liu Y., He W., Yang J., He Y., Wang Z., Li K. The effects of preoperative intestinal dysbacteriosis on postoperative recovery in colorectal cancer surgery: a prospective cohort study. BMC Gastroenterol. 2021; 21(1): 446. doi: 10.1186/s12876-021-02035-6.

29. Zhao L., Cho W.C., Nicolls M.R. Colorectal Cancer-Associated Microbiome Patterns and Signatures. Front Genet. 2021; 12. doi:10.3389/fgene.2021.787176.

30. Cheng W.T., Kantilal H.K., Davamani F. The Mechanism of Bacteroides fragilis Toxin Contributes to Colon Cancer Formation. Malays J Med Sci. 2020; 27(4): 9–21. doi: 10.21315/mjms2020.27.4.2.

31. Witt R.G., Cass S.H., Tran T., Damania A., Nelson E.E., Sirmans E., Burton E.M., Chelvanambi M., Johnson S., Tawbi H.A., Gershenwald J.E., Davies M.A., Spencer C., Mishra A., Wong M.C., Ajami N.J., Peterson C.B., Daniel C.R., Wargo J.A., McQuade J.L., Nelson K.C. Gut Microbiome in Patients With Early-Stage and Late-Stage Melanoma. JAMA Dermatol. 2023; 159(10): 1076–84. doi: 10.1001/jamadermatol.2023.2955.

32. Stoma I., Littmann E.R., Peled J.U., Giralt S., van den Brink M.R.M., Pamer E.G., Taur Y. Compositional Flux Within the Intestinal Microbiota and Risk for Bloodstream Infection With Gram-negative Bacteria. Clin Infect Dis. 2021; 73(11): 4627–35. doi: 10.1093/cid/ciaa068.

33. Stoma I.O., Uss M.A., Milanovich N.F., Stoma V.O., Gubanova T.N., Moduleva E.A. Monitoring of the composition of the intestinal microbiome during hematopoietic stem cell transplantation: application in clinical practice. Infectious diseases: News, Opinions, Training. 2022; 11(2): 85–90. (in Russian). doi: 10.33029/2305-3496-2022-11-2-85-90.

34. Fonseca D.C., Marques Gomes da Rocha I., Depieri Balmant B., Callado L., Aguiar Prudêncio A.P., Tepedino Martins Alves J., Torrinhas R.S., da Rocha Fernandes G., Linetzky Waitzberg D. Evaluation of gut microbiota predictive potential associated with phenotypic characteristics to identify multifactorial diseases. Gut Microbes. 2024; 16(1). doi: 10.1080/19490976.2023.2297815.


Review

For citations:


Aginova V.V., Grigorievskaya Z.V., Petukhova I.N., Bagirova N.S., Tereshchenko I.V., Samoylenko I.V., Kuzmenko A.O., Kononets P.V. Features of intestinal microbiota composition in cancer patients. Siberian journal of oncology. 2024;23(6):51-61. (In Russ.) https://doi.org/10.21294/1814-4861-2024-23-6-51-61

Views: 952


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)