Preview

Siberian journal of oncology

Advanced search

Epigenetic abnormalities and neuroendocrine differentiation in prostate cancer

https://doi.org/10.21294/1814-4861-2025-24-1-115-124

Abstract

Objective. Unlike genetic changes, epigenetic aberrations in prostate cancer can be reversed under the influence of a chemical agent. This fact makes the study of epigenetic changes an important object as potential therapeutic targets. Material and methods. PubMed, Medline, eLibrary.ru databases were analyzed for the keywords: epigenetic prostate cancer, lineage plasticity, neuroendocrine differentiation. For this literature review, 84 relevant publications were selected. The review included studies from 1982 to 2024. Results. The most widely studied epigenetic mutations are DNA hypo- and hypermethylation, histone variability (methylation and acetylation), and neuroendocrine differentiation. Conclusion. The study of the genomic landscape can reveal new opportunities for improving the diagnosis and therapy of castration-resistant prostate cancer (CRPC), which is a potentially lethal form of the disease. It is important not only to search for new biomarkers to identify genetic disorders, but also to study the optimal therapy for advanced prostate cancer.

About the Authors

G. A. Kovchenko
N.A. Lopatkin Research Institute of Urology and Interventional Radiology – Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russia
Russian Federation

Grigori A. Kovchenko - Junior Researcher, Innovation Department, N.A. Lopatkin Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Centre of the Ministry of Health of Russia.

51, build. 1, 3rd Parkovaya St., Moscow, 105425



A. V. Sivkov
N.A. Lopatkin Research Institute of Urology and Interventional Radiology – Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russia
Russian Federation

Andrey V. Sivkov - MD, PhD, Deputy Director, N.A. Lopatkin Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Centre of the Ministry of Health of Russia.

51, build. 1, 3rd Parkovaya St., Moscow, 105425



L. N. Lyubchenko
N.A. Lopatkin Research Institute of Urology and Interventional Radiology – Branch of the National Medical Research Radiological Centre of the Ministry of Health of Russia
Russian Federation

Liudmila N. Lyubchenko - MD, DSc, Head of the Department of Molecular Genetics and Cell Technologies, N.A. Lopatkin Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Centre of the Ministry of Health of Russia.

51, build. 1, 3rd Parkovaya St., Moscow, 105425



A. D. Kaprin
National Medical Research Radiological Centre of the Ministry of Health of Russia; P.A. Hertsen Moscow Oncology Research Institute – Branch of the National Medical Research Radiological Centre of The Ministry of Health of Russia; RUDN University
Russian Federation

Andrey D. Kaprin - MD, DSc, Professor, Academician of the Russian Academy of Sciences, Head of Chair of Oncology and Radiology named after Kharchenko, RUDN University; Director, P.A. Hertsen Moscow Oncology Research Institute – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russia; Director General, National Medical Research Radiological Centre of the Ministry of Health of the Russia.

4, Koroleva St., Obninsk, 249036; 3, 2nd Botkinsky Drive, Moscow, 125284; 6, Miklukho-Maklaya St., Moscow, 117198

Researcher ID (WOS) K-1445-2014



References

1. Bratt O., Damber J.E., Emanuelsson M., Gronberg H. Hereditary prostate cancer: clinical characteristics and survival. J Urol. 2002; 167(6): 2423-6.

2. You J.S., Jones P.A. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012; 22(1): 9-20. doi: 10.1016/j.ccr.2012.06.008.

3. Recillas-Targa F. Cancer Epigenetics: An Overview. Arch Med Res. 2022; 53(8): 732-40. doi: 10.1016/j.arcmed.2022.11.003.

4. Smirnov V.V., Leonov G.E. Epigenetics: theoretical aspects and practical significance. Attending Physician. 2016; (12). (in Russian).

5. Varambally S., Yu J., Laxman B., Rhodes D.R., Mehra R., Tomlins S.A., Shah R.B., Chandran U., Monzon F.A., Becich M.J., Wei J.T., Pienta K.J., Ghosh D., Rubin M.A., Chinnaiyan A.M. Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell. 2005; 8(5): 393-406. doi: 10.1016/j.ccr.2005.10.001.

6. Taylor B.S., Schultz N., Hieronymus H., GopalanA.,Xiao Y, Carver B.S., Arora V.K., Kaushik P., Cerami E., Reva B., Antipin Y., Mitsiades N., Landers T., Dolgalev I., Major J.E., Wilson M., Socci N.D., Lash A.E., Heguy A., Eastham J.A., Scher H.I., Reuter V.E., Scardino P.T., Sander C., Sawyers C.L., Gerald W.L. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010; 18(1): 11-22. doi: 10.1016/j.ccr.2010.05.026.

7. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000; 100(1): 57-70. doi: 10.1016/s0092-8674(00)81683-9.

8. Armenia J., Wankowicz S.A.M., Liu D., Gao J., Kundra R., Reznik E., Chatila W.K., Chakravarty D., Han G.C., Coleman I., Montgomery B., Pritchard C., Morrissey C., Barbieri C.E., BeltranH., SbonerA., Zafeiriou Z., Miranda S., Bielski C.M., Penson A.V., Tolonen C., Huang F.W., Robinson D., Wu Y.M., Lonigro R., Garraway L.A., Demichelis F., Kantoff P.W., Taplin M.E., Abida W., Taylor B.S., Scher H.I., Nelson P.S., de Bono J.S., Rubin M.A., Sawyers C.L., Chinnaiyan A.M.; PCF/SU2C International Prostate Cancer Dream Team; Schultz N., Van Allen E.M. The long tail of oncogenic drivers in prostate cancer. Nat Genet. 2018; 50(5): 645-51. doi: 10.1038/s41588-018-0078-z. Erratum in: Nat Genet. 2019; 51(7): 1194. doi: 10.1038/s41588-019-0451-6.

9. Quigley D.A., Dang H.X., Zhao S.G., Lloyd, P., Aggarwal R., Alumkal J.J., Foye A., Kothari V., Perry M.D., Bailey A.M., Playdle D., Barnard T.J., Zhang L., Zhang J., Youngren, J.F., Cieslik M.P., Parolia A., Beer T.M., Thomas G., Chi K.N., Feng F.Y. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell. 2018; 174(3): 758-769. doi: 10.1016/j.cell.2018.06.039.

10. Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell. 2015; 163(4): 1011-25. doi: 10.1016/j.cell.2015.10.025.

11. Chung W., Eum H.H., Lee H.O., Lee K.M., Lee H.B., Kim, K.T., Ryu H.S., Kim S., Lee J. E., Park Y.H., Kan Z., Han W., Park W.Y. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nature Communications. 2017; 8. doi: 10.1038/ncomms15081.

12. Jovic D., Liang X., Zeng H., Lin L., Xu F., Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin Transl Med. 2022; 12(3). doi: 10.1002/ctm2.694.

13. Lambros M.B., Seed G., Sumanasuriya S., Gil V., Crespo M., Fontes M., Chandler R., Mehra N., Fowler G., Ebbs B., Flohr P., Miranda S., Yuan W., Mackay A., Ferreira A., Pereira R., Bertan C., Figueiredo I., Riisnaes R., Rodrigues D.N., Sharp A., Goodall J., Boysen G., Carreira S., Bianchini D., Rescigno P., Zafeiriou Z., Hunt J., Moloney D., Hamilton L., Neves R.P., Swennenhuis J., Andree K., Stoecklein N.H., Terstappen L.W.M.M., de Bono J.S. Single-Cell Analyses of Prostate Cancer Liquid Biopsies Acquired by Apheresis. Clin Cancer Res. 2018; 24(22): 5635-44. doi: 10.1158/1078-0432.CCR-18-0862.

14. Papalexi E., Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol. 2018; 18(1): 35-45. doi: 10.1038/nri.2017.76.

15. Lin X.D., Lin N., Lin T.T., Wu Y.P., Huang P., Ke Z.B., Lin Y.Z., Chen S.H., Zheng Q.S., Wei Y., Xue X.Y., Lin R.J., Xu N. Identification of marker genes and cell subtypes in castration-resistant prostate cancer cells. J Cancer. 2021; 12(4): 1249-57. doi: 10.7150/jca.49409.

16. Felsenfeld G., Groudine M. Controlling the double helix. Nature. 2003; 421(6921): 448-53. doi: 10.1038/nature01411.

17. Zhang Y., Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev. 2001; 15(18): 2343-60. doi: 10.1101/gad.927301.

18. Jenuwein T., Allis C.D. Translating the histone code. Science. 2001; 293(5532): 1074-80. doi: 10.1126/science.1063127.

19. Kukkonen K., Taavitsainen S., Huhtala L., Uusi-Makela J., Granberg K.J., Nykter M., Urbanucci A. Chromatin and epigenetic dysregulation of prostate cancer development, progression, and therapeutic response. Cancers (Basel) 2021; 13(13). doi: 10.3390/cancers13133325.

20. Li L.C. Epigenetics of prostate cancer. Front Biosci. 2007; 12: 3377-97. doi: 10.2741/2320.

21. Liao Y., Xu K. Epigenetic regulation of prostate cancer: the theories and the clinical implications. Asian J Androl. 2019; 21(3): 279-90. doi: 10.4103/aja.aja_53_18.

22. Berger S.L., Kouzarides T., Shiekhattar R., Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009; 23(7): 781-83. doi: 10.1101/gad.1787609.

23. Rodriguez-Paredes M., Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011; 17(3): 330-39. doi: 10.1038/nm.2305.

24. Bedford M.T., van Helden P.D. Hypomethylation of DNA in pathological conditions of the human prostate. Cancer Res. 1987; 47(20): 5274-76.

25. Stein R., Gruebaum Y., Pollack Y., Razin A., Cedar H. Clonal inheritance of the pattern of DNA methylation in mouse cells. Proc Natl Acad Sci 1982; 79(1): 61-65. doi: 10.1073/pnas.79.1.61.

26. Baylin S.B., Makos M., Wu J.J., Yen R.W., de Bustros A., Vertino P., Nelkin B.D. Abnormal patterns of DNA methylation in human neoplasia: potential consequences for tumor progression. Cancer Cells. 1991; 3(10): 383-90.

27. Jeronimo C., Usadel H., Henrique R., Oliveira J., Lopes C., Nelson W.G., Sidransky D. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst. 2001; 93(22): 1747-52. doi: 10.1093/jnci/93.22.1747.

28. Henrique R., Jeronimo C. Molecular detection of prostate cancer: a role for GSTP1 hypermethylation. Eur Urol. 2004; 46(5): 660-69; discussion 669. doi: 10.1016/j.eururo.2004.06.014.

29. Kinney S.R., Moser M.T., Pascual M., Greally J.M., Foster B.A., Karpf A.R. Opposing roles of Dnmt1 in early- and late-stage murine prostate cancer. Mol Cell Biol. 2010; 30(17): 4159-74. doi: 10.1128/MCB.00235-10.

30. Roupret M., Hupertan V, Catto J.W., Yates D.R., Rehman I., Proctor L.M., Phillips J., Meuth M., Cussenot O., Hamdy F.C. Promoter hypermethylation in circulating blood cells identifies prostate cancer progression. Int J Cancer. 2008; 122(4): 952-56. doi: 10.1002/ijc.23196.

31. Mahon K.L., Qu W., Devaney J., Paul C., Castillo L., Wykes R.J., Chatfield M.D., Boyer M.J., Stockler M.R., Marx G., Gurney H., Mallesara G., Molloy P.L., Horvath L.G., Clark S.J.; PRIMe consortium. Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer. Br J Cancer. 2014; 111(9): 1802-9. doi: 10.1038/bjc.2014.463.

32. Farah E., Zhang Z., Utturkar S.M., Liu J., Ratliff T.L., Liu X. Targeting DNMTs to Overcome Enzalutamide Resistance in Prostate Cancer. Mol Cancer Ther. 2022; 21(1): 193-205. doi: 10.1158/1535-7163.MCT-21-0581.

33. Suzuki H., Freije D., Nusskern D.R., Okami K., Cairns P., Sidransky D., Isaacs W.B., Bova G.S. Interfocal heterogeneity of PTEN/MMAC1 gene alterations in multiple metastatic prostate cancer tissues. Cancer Res. 1998; 58(2): 204-9.

34. Jarrard D.F., Bova G.S., Ewing C.M., Pin S.S., Nguyen S.H., Baylin S.B., Cairns P., Sidransky D., Herman J.G., Isaacs W.B. Dele-tional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer. 1997; 19(2): 90-96.

35. Conteduca V., Hess J., Yamada Y., Ku S.Y., Beltran H. Epigenetics in prostate cancer: clinical implications. Transl Androl Urol. 2021; 10(7): 3104-16. doi: 10.21037/tau-20-1339.

36. Ruggero K., Farran-Matas S., Martinez-Tebar A., Aytes A. Epigenetic Regulation in Prostate Cancer Progression. Curr Mol Biol Rep. 2018; 4(2): 101-15. doi: 10.1007/s40610-018-0095-9.

37. Zhao S.G., Chen W.S., Li H., Foye A., Zhang M., Sjosirom M., Aggarwal R., Playdle D., Liao A., Alumkal J.J., Das R., Chou J., Hua J.T., Barnard T.J., Bailey A.M., Chow E.D., Perry M.D., Dang H.X., Yang R., Moussavi-Baygi R., Zhang L., Alshalalfa M., Laura Chang S., Houla-han K.E., Shiah Y.J., Beer T.M., Thomas G., Chi K.N., Gleave M., Zou-beidi A., Reiter R.E., Rettig M.B., Witte O., Yvonne Kim M., Fong L., Spratt D.E., Morgan T.M., Bose R., Huang F.W., Li H., Chesner L., Shenoy T., Goodarzi H., Asangani I.A., Sandhu S., Lang J.M., Mahajan N.P., Lara P.N., Evans C.P., Febbo P., Batzoglou S., Knudsen K.E., He H.H., Huang J., Zwart W., Costello J.F., Luo J., Tomlins S.A., Wyatt A.W., Dehm S.M., Ashworth A., Gilbert L.A., Boutros P.C., Farh K., Chinnaiyan A.M., Maher C.A., Small E.J., Quigley D.A., Feng F.Y. The DNA methylation landscape of advanced prostate cancer. Nat Genet. 2020; 52(8): 778-89. doi: 10.1038/s41588-020-0648-8.

38. Ehrlich M. DNA methylation in cancer: too much, but also too little. Oncogene. 2002; 21(35): 5400-13. doi: 10.1038/sj.onc.1205651.

39. Wang Y., Jadhav R.R., Liu J., Wilson D., Chen Y., Thompson I.M., Troyer D.A., Hernandez J., Shi H., Leach R.J., Huang T.H., Jin V.X. Roles of Distal and Genic Methylation in the Development of Prostate Tumori-genesis Revealed by Genome-wide DNA Methylation Analysis. Sci Rep. 2016; 6. doi: 10.1038/srep22051.

40. Ge R., Wang Z., Montironi R., Jiang Z., Cheng M., Santoni M., Huang K., Massari F., Lu X., Cimadamore A., Lopez-Beltran A., Cheng L. Epigenetic modulations and lineage plasticity in advanced prostate cancer. Ann Oncol. 2020; 31(4): 470-79. doi: 10.1016/j.annonc.2020.02.002.

41. Partin A.W., van Neste L., Klein E.A., Marks L.S., Gee J.R., Troyer DA., Rieger-Christ K., Jones J.S., Magi-Galluzzi C., MangoldLA., Trock B.J., Lance R.S., Bigley J.W., van Criekinge W., Epstein J.I. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol. 2014; 192(4): 1081-87. doi: 10.1016/j.juro.2014.04.013.

42. Patel P.G., Wessel T., Kawashima A., Okello J.B.A., Jamaspishvili T, Guerard K.P., Lee L., Lee A.Y., How N.E., Dion D., Scarlata E., Jackson C.L., Boursalie S., Sack T., Dunn R., Moussa M., Mackie K., Ellis A., Marra E., Chin J., Siddiqui K., Hetou K., Pickard L.A., Arthur-Hayward V., Bauman G., Chevalier S., Brimo F., Boutros P.C., Lapointe PhD J., Bartlett J.M.S., Gooding R.J., Berman D.M. A three-gene DNA methylation biomarker accurately classifies early stage prostate cancer. Prostate. 2019; 79(14): 1705-14. doi: 10.1002/pros.23895.

43. Bachman M., Uribe-Lewis S., Yang X., Williams M., Murrell A., Balasubramanian S. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat Chem. 2014; 6(12): 1049-55. doi: 10.1038/nchem.2064.

44. Ficz G., Branco M.R., Seisenberger S., Santos F., Krueger F., Hore T.A., Marques C.J., Andrews S., Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011; 473(7347): 398-402. doi: 10.1038/nature10008.

45. Jin S.G., Jiang Y., Qiu R., Rauch T.A., Wang Y., Schackert G., Krex D., Lu Q., Pfeifer G.P. 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res. 2011; 71(24): 7360-65. doi: 10.1158/0008-5472.CAN-11-2023.

46. Takayama K., Misawa A., Suzuki T., Takagi K., Hayashizaki Y., Fujimura T., Homma Y., Takahashi S., Urano T., Inoue S. TET2 repression by androgen hormone regulates global hydroxymethylation status and prostate cancer progression. Nat Commun. 2015; 6. doi: 10.1038/ncomms9219.

47. Strand S.H., Hoyer S., Lynnerup A.S., Haldrup C., Storebjerg T.M., Borre M., Orntoft T.F., Sorensen K.D. High levels of 5-hydroxymethyl-cytosine (5hmC) is an adverse predictor of biochemical recurrence after prostatectomy in ERG-negative prostate cancer. Clin Epigenet. 2015; 7. doi: 10.1186/s13148-015-0146-5.

48. Spans L., van den Broeck T., Smeets E., Prekovic S., Thienpont B., Lambrechts D., Karnes R.J., Erho N., Alshalalfa M., Davicioni E., Helsen C., Gevaert T., Tosco L., Haustermans K., Lerut E., Joniau S., Claessens F. Genomic and epigenomic analysis of high-risk prostate cancer reveals changes in hydroxymethylation and TET1. Oncotarget. 2016; 7(17): 24326-38. doi: 10.18632/oncotarget.8220.

49. Storebjerg T.M., Strand S.H., Hoyer S., Lynnerup A.S., Borre M., 0rntoft T.F, Sorensen K.D. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcy-tosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer. Clin Epigenetics. 2018; 10(1): 105. doi: 10.1186/s13148-018-0540-x.

50. Sokolova V., Sarkar S., Tan D. Histone variants and chromatin structure, update of advances. Comput Struct Biotechnol J. 2022; 21: 299-311. doi: 10.1016/j.csbj.2022.12.002.

51. Allis C.D., Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016; 17(8): 487-500. doi: 10.1038/nrg.2016.59.

52. Li Y., Ge K., Li T., Cai R., Chen Y. The engagement of histone lysine methyltransferases with nucleosomes: structural basis, regulatory mechanisms, and therapeutic implications. Protein Cell. 2023; 14(3): 165-79. doi: 10.1093/procel/pwac032.

53. Cai C., He H.H., Gao S., Chen S., Yu Z., Gao Y., Chen S., Chen M.W., Zhang J., Ahmed M., Wang Y., Metzger E., Schule R., Liu X.S., Brown M., Balk S.P. Lysine-specific demethylase 1 has dual functions as a major regulator of androgen receptor transcriptional activity. Cell Rep. 2014; 9(5): 1618-27. doi: 10.1016/j.celrep.2014.11.008.

54. Gao S., Chen S., Han D., Wang Z., Li M., Han W., Besschetnova A., Liu M., Zhou F., Barrett D., Luong M.P., Owiredu J., Liang Y., Ahmed M., Petricca J., Patalano S., Macoska J.A., Corey E., Chen S., Balk S.P., He H.H., Cai C. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat Genet. 2020; 52(10): 1011-17. doi: 10.1038/s41588-020-0681-7.

55. Guo Y., Zhao S., Wang G.G. Polycomb Gene Silencing Mechanisms: PRC2 Chromatin Targeting, H3K27me3 ‘Readout', and Phase Separation-Based Compaction. Trends Genet. 2021; 37(6): 547-65. doi: 10.1016/j.tig.2020.12.006.

56. Cao R., Wang L., Wang H., Xia L., Erdjument-Bromage H., Tempst P., Jones R.S., Zhang Y. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science. 2002; 298(5595): 1039-43. doi: 10.1126/science.1076997.

57. Yu J., Yu J., Mani R.-S., Cao Q., Brenner C. J., Cao X., Wang X., Wu L., Li J., Hu M., Gong Y., Cheng H., Laxman B., Vellaichamy A., Shankar S., Li Y., Dhanasekaran S.M., Morey R., Barrette T., Lonigro R.J., Tomlins S.A., Varambally S., Qin Z.S., Chinnaiyan A.M. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell. 2010; 17(5): 443-54. doi: 10.1016/j.ccr.2010.03.018.

58. Varambally S., Dhanasekaran S.M., Zhou M., Barrette T.R., Kumar-Sinha C., Sanda M.G., Ghosh D., Pienta K.J., Sewalt R.G., Otte A.P., Rubin M.A., Chinnaiyan A.M. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002; 419(6907): 624-29. doi: 10.1038/nature01075.

59. Bai Y., Zhang Z., Cheng L., Wang R., Chen X., Kong Y., Feng F., Ahmad N., Li L., Liu X. Inhibition of enhancer of zeste homolog 2 (EZH2) overcomes enzalutamide resistance in castration-resistant prostate cancer. J Biol Chem. 2019; 294(25): 9911-23. doi: 10.1074/jbc.RA119.008152.

60. Li N., Xue W., Yuan H., Dong B., Ding Y., Liu Y., Jiang M., Kan S., Sun T., Ren J., Pan Q., Li X., Zhang P., Hu G., Wang Y., Wang X., Li Q., Qin J. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017; 127(4): 1284-302. doi: 10.1172/JCI91144.

61. Asangani I.A., Ateeq B., Cao Q., Dodson L., Pandhi M., Kunju L.P., Mehra R., Lonigro R.J., Siddiqui J., Palanisamy N., Wu Y.M., Cao X., Kim J.H., Zhao M., Qin Z.S., Iyer M.K., Maher C.A., Kumar-Sinha C., Varambally S., Chinnaiyan A.M. Characterization of the EZH2-MMSET histone methyltransferase regulatory axis in cancer. Mol Cell. 2013; 49(1): 80-93. doi: 10.1016/j.molcel.2012.10.008.

62. Zhao Y., Garcia B.A. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol. 2015; 7(9). doi: 10.1101/cshperspect.a025064.

63. German J.G., Baylin S.B. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003; 349(21): 2042-54. doi: 10.1056/NEJMra023075.

64. Wu Y., Sarkissyan M., Vadgama J.V. Epigenetics in breast and prostate cancer. Methods Mol Biol. 2015; 1238: 425-66. doi: 10.1007/978-1-4939-1804-1_23.

65. Lavery D.N., Bevan C.L. Androgen receptor signalling in prostate cancer: the functional consequences of acetylation. J Biomed Biotechnol. 2011. doi: 10.1155/2011/862125.

66. Severson T.M., Zhu Y., Prekovic S., Schuurman K., Nguyen H.M., Brown L.G., Hakkola S., Kim Y., Kneppers J., Linder S., Stelloo S., Lieftink C., van der Heijden M., Nykter M., van der Noort V., Sanders J., Morris B., Jenster G., van Leenders G.J., Pomerantz M., Freedman M.L., Beijersbergen R.L., Urbanucci A., Wessels L., Corey E., Zwart W., Bergman A.M. Enhancer profiling identifies epigenetic markers of endocrine resistance and reveals therapeutic options for metastatic castration-resistant prostate cancer patients. medRxiv [Preprint]. 2023. doi: 10.1101/2023.02.24.23286403.

67. Whyte W.A., Orlando D.A., Hnisz D., Abraham B.J., Lin C.Y., Kagey M.H., Rahl P.B., Lee T.I., Young R.A. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013; 153(2): 307-19. doi: 10.1016/j.cell.2013.03.035.

68. Valdes-Mora F., Gould CM., Colino-S^angguino Y, Qu W., Song J.Z., Taylor K.M., Buske F.A., Statham A.L., Nair S.S., Armstrong N.J., Kench J.G., Lee K.M..L., Horvath L.G., Qiu M., Ilinykh A., Yeo-Teh N.S., Gallego-Ortega D., Stirzaker C., Clark S.J. Acetylated histone variant H2A.Z is involved in the activation of neo-enhancers in prostate cancer. Nat Commun. 2017; 8(1). doi: 10.1038/s41467-017-01393-8.

69. Sayar E., Patel R.A., Coleman I.M., Roudier M.P., Zhang A., Mustafi P., Low J.Y., Hanratty B., Ang L.S., Bhatia V., Adil M., Bakbak H., Quigley D.A., Schweizer M.T., Hawley J.E., Kollath L., True L.D., Feng F.Y., Bander N.H., Corey E., Lee J.K., Morrissey C., Gulati R., Nelson P.S., Haffner M.C. Reversible epigenetic alterations mediate PSMA expression heterogeneity in advanced metastatic prostate cancer. JCI Insight. 2023; 8(7). doi: 10.1172/jci.insight.162907.

70. Yuan T.C., Veeramani S., Lin F.F., Kondrikou D., Zelivianski S., Igawa T., Karan D., Batra S.K., Lin M.F. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgensensitive LNCaP cells. Endocr Relat Cancer. 2006; 13(1): 151-67. doi: 10.1677/erc.1.01043.

71. Kovchenko G.A., Sivkov A.V, KaprinA.D. The role of chromogranin A determination in the treatment of patients with castration-resistant prostate cancer. Experimental and Clinical Urology. 2024; 17(1): 75-85. (in Russian). doi: 10.29188/2222-8543-2024-17-1-75-85. EDN: TCUWHH.

72. Sciarra A., Mariotti G., Gentile V., Voria G., Pastore A., Monti S., Di Silverio F. Neuroendocrine differentiation in human prostate tissue: is it detectable and treatable? BJU Int. 2003; 91(5): 438-45. doi: 10.1046/j.1464-410x.2003.03066.x.

73. Li Z., Sun Y., Chen X., Squires J., Nowroozizadeh B., Liang C., Huang J. p53 Mutation Directs AURKA Overexpression via miR-25 and FBXW7 in Prostatic Small Cell Neuroendocrine Carcinoma. Mol Cancer Res. 2015; 13(3): 584-91. doi: 10.1158/1541-7786.MCR-14-0277-T.

74. Xu X., Huang Y.H., Li Y.J., Cohen A., Li Z., Squires J., Zhang W., Chen X.F., Zhang M., Huang J.T. Potential therapeutic effect of epigenetic therapy on treatment-induced neuroendocrine prostate cancer. Asian J Androl. 2017; 19(6): 686-93. doi: 10.4103/1008-682X.191518.

75. Antonarakis E.S. Targeting lineage plasticity in prostate cancer. Lancet Oncol. 2019; 20(10): 1338-40. doi: 10.1016/S1470-2045-(19)30497-8.

76. Long Z., Deng L., Li C., He Q., He Y., Hu X., Cai Y., Gan Y. Loss of EHF facilitates the development of treatment-induced neuroendocrine prostate cancer. Cell Death Dis. 2021; 12(1). doi: 10.1038/s41419-020-03326-8.

77. Wishahi M. Treatment-induced neuroendocrine prostate cancer and de novo neuroendocrine prostate cancer: Identification, prognosis and survival, genetic and epigenetic factors. World J Clin Cases. 2024; 12(13): 2143-46. doi: 10.12998/wjcc.v12.i13.2143.

78. Abida W., Cyrta J., Heller G., Prandi D., Armenia J., Coleman I., Cieslik M., Benelli M., Robinson D., Van Allen EM., Sboner A., Fedrizzi T., Mosquera J.M., Robinson B.D., De Sarkar N., Kunju L.P., Tomlins S., Wu Y.M., Nava Rodrigues D., Loda M., Gopalan A., Reuter V.E., Pritchard C.C., Mateo J., Bianchini D., Miranda S., Carreira S., Rescigno P., Filipenko J., Vinson J., Montgomery R.B., Beltran H., Heath E.I., Scher H.I., Kantoff P.W., Taplin M.E., Schultz N., deBono J.S., Demichelis F., Nelson P.S., Rubin M.A., Chinnaiyan A.M., Sawyers C.L. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Nat. Acad Sci USA. 2019; 116(23): 11428-36. doi: 10.1073/pnas.1902651116.

79. Kaarijärvi R., Kaljunen H., Ketola K. Molecular and Functional Links between Neurodevelopmental Processes and Treatment-Induced Neuroendocrine Plasticity in Prostate Cancer Progression. Cancers (Basel). 2021; 13(4). doi: 10.3390/cancers13040692.

80. Beltran H., Prandi D., Mosquera J.M., Benelli M., Puca L., Cyrta J., Marotz C., Giannopoulou E., Chakravarthi B.V., Varambally S., Tomlins S.A., Nanus D.M., Tagawa S.T., Van Allen E.M., Elemento O., Sboner A., Garraway L.A., Rubin M.A., Demichelis F. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med. 2016; 22(3): 298-305. doi: 10.1038/nm.4045.

81. Chen R., Dong X., Gleave M. Molecular model for neuroendocrine prostate cancer progression. BJU Int. 2018; 122(4): 560-70. doi: 10.1111/bju.14207.

82. Clermont P.L., Lin D., Crea F., Wu R., Xue H., Wang Y., Thu K.L., Lam W.L., Collins C.C., Wang Y., Helgason C.D. Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin Epigenet, 2015; 7(1). doi: 10.1186/s13148-015-0074-4.

83. Viré E., Brenner C., Deplus R., Blanchon L., Fraga M., Didelot C., Morey L., van Eynde A., Bernard D., Vanderwinden J.M., Bollen M., Esteller M., Di Croce L., de Launoit Y., Fuks F. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006; 439(7078): 871-74. doi: 10.1038/nature04431. Erratum in: Nature. 2007; 446(7137): 824.

84. BeltranH., RickmanD.S., ParkK., Chae S.S., Sboner A., MacDonald T.Y., Wang Y., Sheikh K.L., Terry S., Tagawa S.T., Dhir R., Nelson J.B., de la Taille A., Allory Y., Gerstein M.B., Perner S., Pienta K.J., Chinnaiyan A.M., Wang Y., Collins C.C., Gleave M.E., Demichelis F., Nanus D.M., Rubin M.A. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discovery. 2011; 1(6): 487-95. doi: 10.1158/2159-8290.CD-11-0130.


Review

For citations:


Kovchenko G.A., Sivkov A.V., Lyubchenko L.N., Kaprin A.D. Epigenetic abnormalities and neuroendocrine differentiation in prostate cancer. Siberian journal of oncology. 2025;24(1):115-124. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-1-115-124

Views: 737


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)