miR-17-92 and miR-203A clusters as predictors of the clinical course of chronic myeloid leukemia
https://doi.org/10.21294/1814-4861-2025-24-4-66-81
Abstract
Background. Tyrosine kinase inhibitors are now widely used for the treatment of chronic myeloid leukemia (CML), and disease progression is often linked with the development of resistance to these drugs. There is a need for additional theranostic tools, and they may include expression levels of certain microRNAs (miR).
Purpose: to study expression levels of miR-203a and of miR-17-92 cluster members in bone marrow and peripheral-blood components (lymphocytes, plasma, and extracellular vesicles) from CML patients with various clinical characteristics and treatment responses.
Material and Methods. Blood and bone marrow samples were collected from 56 patients having a CML diagnosis from the City Hematology Center at the government-funded healthcare institution (Novosibirsk Oblast) City Clinical Hospital No. 2 from the years 2016 to 2017. Expression levels of miRNAs were quantifed by reverse-transcription real-time PCR according to the TaqMan principle.
Results. In bone marrow and blood lymphocytes, expression levels of miR-17, miR-18а, and miR-20a were higher in patients in the acceleration phase (FA) as compared to the chronic phase (CF) and in patients with an unfavorable prognosis. In plasma, expression levels of miR-19a and miR-19b were higher in patients with CF compared to the blast crisis (BC) phase and higher in patients with a favorable prognosis. MiR-19a expression was also higher in extracellular vesicles of patients with a favorable prognosis, and miR-203 expression was higher in patients with a favorable prognosis in extracellular vesicles and in blood plasma. Furthermore, miR-203 expression proved to be signifcantly greater in extracellular vesicles of patients who achieved a major molecular response.
Conclusion. MiR-17, miR-18а, and miR-20a in bone marrow and lymphocytes seem to be the most promising for the possible practical application, and the same is true for miR-19a and miR-19b in blood plasma and miR-203 in blood plasma and extracellular vesicles.
Keywords
About the Authors
M. L. PerepechaevaRussian Federation
Maria L. Perepechaeva, PhD, Senior Researcher, Institute of Molecular Biology and Biophysics
Researcher ID (WOS): AAG-1840-2020. Author ID (Scopus): 8283410900.
2/12, Timakova St., Novosibirsk, 630117
O. B. Goreva
Russian Federation
Olga B. Goreva, PhD, Senior Researcher, Institute of Molecular Biology and Biophysics
Researcher ID (WOS): K-3428-2013. Author ID (Scopus): 8691755700.
2/12, Timakova St., Novosibirsk, 630117
A. S. Lyamkina
Russian Federation
Anna S. Lyamkina, MD, PhD, Associate Professor of the Department of Therapy, Hematology and Transfusiology, Faculty of Advanced Training and Practical Veterinary Medicine
Researcher ID (WOS): Y-7192-2018. Author ID (Scopus): 16310262000.
52, Krasny Prospect, Novosibirsk, 630091
T. I. Pospelova
Russian Federation
Tatyana I. Pospelova, MD, PhD, Professor, Head of the Department of Therapy, Hematology and Transfusiology, Faculty of Advanced Training and Practical Veterinary Medicine
Author ID (Scopus): 7005792562.
52, Krasny Prospect, Novosibirsk, 630091
A. Yu. Grishanova
Russian Federation
Alevtina Yu. Grishanova, DSc, Professor, Chief Researcher, Head of the Laboratory of Foreign Compounds, Institute of Molecular Biology and Biophysics
Researcher ID (WOS): C-1759-2014. Author ID (Scopus): 7004298657.
2/12, Timakova St., Novosibirsk, 630117
References
1. Minciacchi V.R., Kumar R., Krause D.S. Chronic Myeloid Leukemia: A Model Disease of the Past, Present and Future. Cells. 2021; 10(1): 117. doi: 10.3390/cells10010117.
2. Hochhaus A., Baccarani M., Silver R.T., Schiffer C., Apperley J.F., Cervantes F., Clark R.E., Cortes J.E., Deininger M.W., Guilhot F., HjorthHansen H., Hughes T.P., Janssen J., Kantarjian H.M., Kim D.W., Larson R.A., Lipton J.H., Mahon F.X., Mayer J., Nicolini F., Niederwieser D., Pane F., Radich J.P., Rea D., Richter J., Rosti G., Rousselot P., Saglio G., Saussele S., Soverini S., Steegmann J.L., Turkina A., Zaritskey A., Hehlmann R. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020; 34(4): 966–84. doi: 10.1038/s41375-020-0776-2.
3. Cross N.C.P., Ernst T., Branford S., Cayuela J.M., Deininger M., Fabarius A., Kim D.D.H., Machova Polakova K., Radich J.P., Hehlmann R., Hochhaus A., Apperley J.F., Soverini S. European LeukemiaNet laboratory recommendations for the diagnosis and management of chronic myeloid leukemia. Leukemia. 2023; 37(11): 2150–67. doi: 10.1038/s41375-023-02048-y.
4. Khoury J.D., Solary E., Abla O., Akkari Y., Alaggio R., Apperley J.F., Bejar R., Berti E., Busque L., Chan J.K.C., Chen W., Chen X., Chng W.J., Choi J.K., Colmenero I., Coupland S.E., Cross N.C.P., De Jong D., Elghetany M.T., Takahashi E., Emile J.F., Ferry J., Fogelstrand L., Fontenay M., Germing U., Gujral S., Haferlach T., Harrison C., Hodge J.C., Hu S., Jansen J.H., Kanagal-Shamanna R., Kantarjian H.M., Kratz C.P., Li X.Q., Lim M.S., Loeb K., Loghavi S., Marcogliese A., Meshinchi S., Michaels P., Naresh K.N., Natkunam Y., Nejati R., Ott G., Padron E., Patel K.P., Patkar N., Picarsic J., Platzbecker U., Roberts I., Schuh A., Sewell W., Siebert R., Tembhare P., Tyner J., Verstovsek S., Wang W., Wood B., Xiao W., Yeung C., Hochhaus A. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022; 36(7): 1703–19. doi: 10.1038/s41375-022-01613-1.
5. Hussein B.M., Hidayat H.J., Salihi A., Sabir D.K., Taheri M., Ghafouri-Fard S. MicroRNA: A signature for cancer progression. Biomed Pharmacother. 2021; 138: 111528. doi: 10.1016/j.biopha.2021.111528.
6. Condrat C.E., Thompson D.C., Barbu M.G., Bugnar O.L., Boboc A., Cretoiu D., Suciu N., Cretoiu S.M., Voinea S.C. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020; 9(2): 276. doi: 10.3390/cells9020276.
7. Miura N., Hasegawa J., Shiota G. Serum messenger RNA as a biomarker and its clinical usefulness in malignancies. Clin Med Oncol. 2008; 2: 511–27. doi: 10.4137/cmo.s379.
8. Bai X., Hua S., Zhang J., Xu S. The MicroRNA Family Both in Normal Development and in Different Diseases: The miR-17-92 Cluster. Biomed Res Int. 2019: 9450240. doi: 10.1155/2019/9450240.
9. Khuu C., Utheim T.P., Sehic A. The Three Paralogous MicroRNA Clusters in Development and Disease, miR-17-92, miR-106- a-363, and miR-106b-25. Scientifica (Cairo). 2016: 1379643. doi: 10.1155/2016/1379643.
10. Bonauer A., Dimmeler S. The microRNA-17-92 cluster: still a miRacle? Cell Cycle. 2009; 8(23): 3866–73. doi: 10.4161/cc.8.23.9994.
11. Li M., Guan X., Sun Y., Mi J., Shu X., Liu F., Li C. miR-92a family and their target genes in tumorigenesis and metastasis. Exp Cell Res. 2014; 323(1): 1–6. doi: 10.1016/j.yexcr.2013.12.025.
12. Venturini L., Battmer K., Castoldi M., Schultheis B., Hochhaus A., Muckenthaler M.U., Ganser A., Eder M., Scherr M. Expression of the miR- 17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007; 109(10): 4399–405. doi: 10.1182/blood-2006-09-045104.
13. Zhao W., Gupta A., Krawczyk J., Gupta S. The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat Res Commun. 2022; 33: 100647. doi: 10.1016/j.ctarc.2022.100647.
14. Jimbu L., Mesaros O., Joldes C., Neaga A., Zaharie L., Zdrenghea M. MicroRNAs Associated with a Bad Prognosis in Acute Myeloid Leukemia and Their Impact on Macrophage Polarization. Biomedicines. 2024; 12(1): 121. doi: 10.3390/biomedicines12010121.
15. Hu T., Chong Y., Qin H., Kitamura E., Chang C.S., Silva J., Ren M., Cowell J.K. The miR-17/92 cluster is involved in the molecular etiology of the SCLL syndrome driven by the BCR-FGFR1 chimeric kinase. Oncogene. 2018; 37(14): 1926–38. doi: 10.1038/s41388-017-0091-1.
16. Huang X., Chen Z., Ni F., Ye X., Qian W. Shikonin overcomes drug resistance and induces necroptosis by regulating the miR-92a-1-5p/MLKL axis in chronic myeloid leukemia. Aging (Albany NY). 2020; 12(17): 17662–80. doi: 10.18632/aging.103844.
17. Jia Q., Sun H., Xiao F., Sai Y., Li Q., Zhang X., Yang S., Wang H., Wang H., Yang Y., Wu C.T., Wang L. miR-17-92 promotes leukemogenesis in chronic myeloid leukemia via targeting A20 and activation of NF-kappaB signaling. Biochem Biophys Res Commun. 2017; 487(4): 868–74. doi: 10.1016/j.bbrc.2017.04.144.
18. Sawyers C.L., Callahan W., Witte O.N. Dominant negative MYC blocks transformation by ABL oncogenes. Cell. 1992; 70(6): 901–10. doi: 10.1016/0092-8674(92)90241-4.
19. Gasparini C., Celeghini C., Monasta L., Zauli G. NF-kappaB pathways in hematological malignancies. Cell Mol Life Sci. 2014; 71(11): 2083–2102. doi: 10.1007/s00018-013-1545-4.
20. Li S., Li L., Li J., Liang X., Song C., Zou Y. miR-203, fine-tunning neuroinflammation by juggling different components of NF-kappaB signaling. J Neuroinflammation. 2022; 19(1): 84. doi: 10.1186/s12974-022-02451-9.
21. Liu X., Cheng F., Bai X., Zhao T., Zhao L., Wang L., Li M., Wu X., Chen X., Tang P., Wang M., Jiang L., Yan C., Pei F., Gao X., Ma N., Yang B., Zhang Y. MiR-203 is an anti-obese microRNA by targeting apical sodiumdependent bile acid transporter. iScience. 2022; 25(8): 104708. doi: 10.1016/j.isci.2022.104708.
22. Liu Z., Huang Y., Han Z., Shen Z., Yu S., Wang T., Dong Z., Kang M. Exosome-mediated miR-25/miR-203 as a potential biomarker for esophageal squamous cell carcinoma: improving early diagnosis and revealing malignancy. Transl Cancer Res. 2021; 10(12): 5174–82. doi: 10.21037/tcr-21-1123.
23. Xu M., Gu M., Zhang K., Zhou J., Wang Z., Da J. miR-203 inhibition of renal cancer cell proliferation, migration and invasion by targeting of FGF2. Diagn Pathol. 2015; 10: 24. doi: 10.1186/s13000-015-0255-7.
24. Han N., Li H., Wang H. MicroRNA-203 inhibits epithelialmesenchymal transition, migration, and invasion of renal cell carcinoma cells via the inactivation of the PI3K/AKT signaling pathway by inhibiting CAV1. Cell Adh Migr. 2020; 14(1): 227–41. doi: 10.1080/19336918.2020.1827665.
25. Shibuta T., Honda E., Shiotsu H., Tanaka Y., Vellasamy S., Shiratsuchi M., Umemura T. Imatinib induces demethylation of miR-203 gene: an epigenetic mechanism of anti-tumor effect of imatinib. Leuk Res. 2013; 37(10): 1278–86. doi: 10.1016/j.leukres.2013.07.019.
26. He J.H., Li Y.M., Li Y.G., Xie X.Y., Wang L., Chun S.Y., Cheng W.J. hsa-miR-203 enhances the sensitivity of leukemia cells to arsenic trioxide. Exp Ther Med. 2013; 5(5): 1315–21. doi: 10.3892/etm.2013.981.
27. He J., Han Z., An Z., Li Y., Xie X., Zhou J., He S., Lv Y., He M., Qu H., Liu G., Li Y. The miR-203a Regulatory Network Affects the Proliferation of Chronic Myeloid Leukemia K562 Cells. Front Cell Dev Biol. 2021; 9: 616711. doi: 10.3389/fcell.2021.616711.
28. Abdulmawjood B., Costa B., Roma-Rodrigues C., Baptista P.V., Fernandes A.R. Genetic Biomarkers in Chronic Myeloid Leukemia: What Have We Learned So Far? Int J Mol Sci. 2021; 22(22): 12516. doi: 10.3390/ijms222212516.
29. Li Y., Yuan Y., Tao K., Wang X., Xiao Q., Huang Z., Zhong L., Cao W., Wen J., Feng W. Inhibition of BCR/ABL protein expression by miR-203 sensitizes for imatinib mesylate. PLoS One. 2013; 8(4): e61858. doi: 10.1371/journal.pone.0061858.
30. Hallek M., Cheson B.D., Catovsky D., Caligaris-Cappio F., Dighiero G., Dohner H., Hillmen P., Keating M.J., Montserrat E., Rai K.R., Kipps T.J., International Workshop on Chronic Lymphocytic L. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008; 111(12): 5446–56. doi: 10.1182/blood-2007-06-093906.
31. Baccarani M., Deininger M.W., Rosti G., Hochhaus A., Soverini S., Apperley J.F., Cervantes F., Clark R.E., Cortes J.E., Guilhot F., Hjorth-Hansen H., Hughes T.P., Kantarjian H.M., Kim D.W., Larson R.A., Lipton J.H., Mahon F.X., Martinelli G., Mayer J., Muller M.C., Niederwieser D., Pane F., Radich J.P., Rousselot P., Saglio G., Saussele S., Schiffer C., Silver R., Simonsson B., Steegmann J.L., Goldman J.M., Hehlmann R. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013; 122(6): 872–84. doi: 10.1182/blood-2013-05-501569.
32. Russian clinical recommendations on diagnostic and treatment of lymphoproliferative disorders. Ed. by I.V. Poddubnaya, V.G. Savchenko. Moscow, 2016. (in Russian). [Internet]. [cited 01.02.2025]. URL: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://irbis.rmapo.ru/UploadsFilesForIrbis/1f77dc9fc2f08fe5594aa6dee5793a59.pdf.
33. Lyamkina A.S., Nechunaeva I.N., Vorontsova E.V., Tairova S.A., Alexandrova T.N., Naumenko O.V., Pospelova T.I. Comparison of morbidity and results of chronic myeloid leukemia treatment in Novosibirsk and the Novosibirsk region. Russian Journal of Hematology and Transfusiology. 2023; 68(1): 35–49. (in Russian). doi: 10.35754/0234-5730-2023-68-1-35-49. EDN: SSLNZA.
34. Perepechaeva M.L., Goreva O.B., Berezina O.V., Pospelova T.I., Grishanova A.Yu. miR-155 and miR-223 as markers of biological and clinical features of chronic lymphocytic leukemia. Siberian Journal of Oncology. 2024; 23(1): 75–86. (in Russian). doi: 10.21294/1814-4861-2024-23-1-75-86. EDN: JABBDL.
35. Yuan W.X., Gui Y.X., Na W.N., Chao J., Yang X. Circulating microRNA-125b and microRNA-130a expression profiles predict chemoresistance to R-CHOP in diffuse large B-cell lymphoma patients. Oncol Lett. 2016; 11(1): 423–32. doi: 10.3892/ol.2015.3866.
36. Liu X., Haniff H.S., Childs-Disney J.L., Shuster A., Aikawa H., Adibekian A., Disney M.D. Targeted Degradation of the Oncogenic MicroRNA 17-92 Cluster by Structure-Targeting Ligands. J Am Chem Soc. 2020; 142(15): 6970–82. doi: 10.1021/jacs.9b13159.
37. Qian Y.Y., Liu Z.S., Zhang Z., Levenson A.S., Li K. Pterostilbene increases PTEN expression through the targeted downregulation of microRNA-19a in hepatocellular carcinoma. Mol Med Rep. 2018; 17(4): 5193–201. doi: 10.3892/mmr.2018.8515.
38. Peng C., Chen Y., Yang Z., Zhang H., Osterby L., Rosmarin A.G., Li S. PTEN is a tumor suppressor in CML stem cells and BCR-ABLinduced leukemias in mice. Blood. 2010; 115(3): 626–35. doi: 10.1182/blood-2009-06-228130.
39. Chakraborty C., Sharma A.R., Patra B.C., Bhattacharya M., Sharma G., Lee S.S. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget. 2016; 7(27): 42683–97. doi: 10.18632/oncotarget.7977.
Supplementary files
|
1. Fig. 1. Expression levels of miR-17-92 (А-F) and miR-203а (G) in bone marrow and peripheral blood lymphocytes in groups of patients having different phases of the disease. The data are presented as a median with 25–75th percentiles and minimal and maximal relative expression levels. Chronic phase (CF): n=45–50, acceleration phase (AF): n=3, and blast crisis (BC): n=3; created by the authors | |
Subject | ||
Type | Исследовательские инструменты | |
View
(900KB)
|
Indexing metadata ▾ |
|
2. Fig. 1. Expression levels of miR-17-92 (А-F) and miR-203а (G) in bone marrow and peripheral blood lymphocytes in groups of patients having different phases of the disease. The data are presented as a median with 25–75th percentiles and minimal and maximal relative expression levels. Chronic phase (CF): n=45–50, acceleration phase (AF): n=3, and blast crisis (BC): n=3; created by the authors | |
Subject | ||
Type | Исследовательские инструменты | |
View
(678KB)
|
Indexing metadata ▾ |
|
3. Fig. 2. Expression levels of miR-17-92 (A-F) and miR-203a (G) in bone marrow and peripheral blood lymphocytes in groups of patients having different prognoses of CML. The data are presented as a median with 25–75th percentiles and minimal and maximal relative expression levels. Favorable prognosis (fav.): n=27–33, intermediate prognosis (int.): n=12–15, and unfavorable prognosis (unfav.): n=8; created by the authors | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
|
4. Fig. 2. Expression levels of miR-17-92 (A-F) and miR-203a (G) in bone marrow and peripheral blood lymphocytes in groups of patients having different prognoses of CML. The data are presented as a median with 25–75th percentiles and minimal and maximal relative expression levels. Favorable prognosis (fav.): n=27–33, intermediate prognosis (int.): n=12–15, and unfavorable prognosis (unfav.): n=8; created by the authors | |
Subject | ||
Type | Исследовательские инструменты | |
View
(898KB)
|
Indexing metadata ▾ |
|
5. Fig. 3. Expression levels of miR-17-92 (A-F) and miR-203a (G) in bone marrow and peripheral blood lymphocytes from groups of patients with different responses to treatment. The data are given as a median with 25–75th percentiles and minimal and maximal relative expression levels. Major molecular response (MMR): n=12–13, complete cytogenetic response (CCR): n=10–11, and no response (NR) to treatment: n=14–16; created by the authors | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
|
6. Fig. 3. Expression levels of miR-17-92 (A-F) and miR-203a (G) in bone marrow and peripheral blood lymphocytes from groups of patients with different responses to treatment. The data are given as a median with 25–75th percentiles and minimal and maximal relative expression levels. Major molecular response (MMR): n=12–13, complete cytogenetic response (CCR): n=10–11, and no response (NR) to treatment: n=14–16; created by the authors | |
Subject | ||
Type | Исследовательские инструменты | |
View
(775KB)
|
Indexing metadata ▾ |
Review
For citations:
Perepechaeva M.L., Goreva O.B., Lyamkina A.S., Pospelova T.I., Grishanova A.Yu. miR-17-92 and miR-203A clusters as predictors of the clinical course of chronic myeloid leukemia. Siberian journal of oncology. 2025;24(4):66-81. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-4-66-81