The role of immune proteasomes in the mechanisms of lymphatic metastasis in non-small cell lung cancer
https://doi.org/10.21294/1814-4861-2025-24-4-147-154
Abstract
Objective. This review aimed to study the role of immune proteasomes in the mechanisms of lymphatic metastasis in non-small cell lung cancer (nsClC).
Material and Methods. The review’s literature search was conducted using the Medline, Cochrane library, and elibrary databases, with a focus on publications from the last decade.
Results. The concepts of molecular mechanisms of lymphatic metastasis in lung cancer, including the role of immune proteasomes in the development of nsClC were presented. Studies indicating the involvement of proteasomes in the regulation of angiogenesis and cell locomotion processes were found. An increase in the expression of the PSMB8 and PSMB9 genes encoding immunoproteasome subunits in nsClC cell cultures was described. Information that immunoproteasomes could be a therapeutic target in cisplatin-resistant lung cancer was presented.
Conclusion. The study of the mechanisms of lymphatic metastasis in cancer development remains crucial in cancer research. The data obtained have shown that proteasomes are a promising molecular target and their further study can open new horizons in the fight against cancer.
About the Authors
E. A. SidenkoRussian Federation
Evgeniya A. Sidenko, MD, PhD, Junior Researcher, Tumor Biochemistry Laboratory; Associate Professor, Biochemistry and Molecular Biology Department with Course in Clinical and Laboratory Diagnostics
5, Kooperativny st., Tomsk, 634009
2, Moskovsky trakt, Tomsk, 634050
G. V. Kakurina
Russian Federation
Gelena V. Kakurina, MD, PhD, Senior Researcher, Tumor Biochemistry Laboratory; Associate Professor, Biochemistry and Molecular Biology Department with Course in and Laboratory Diagnostics
5, Kooperativny st., Tomsk, 634009
2, Moskovsky trakt, Tomsk, 634050
N. V. Yunusova
Russian Federation
Natalia V. Yunusova, MD, DSc, Chief Researcher, Laboratory of Tumor Biochemistry
5, Kooperativny st., Tomsk, 634009
D. A. Korshunov
Russian Federation
Dmitry A. Korshunov, MD, PhD, Researcher, Laboratory of Tumor Biochemistry
5, Kooperativny st., Tomsk, 634009
A. A. Mokh
Russian Federation
Alena A. Mokh, MD, Postgraduate, Department of Thoracic Oncology
5, Kooperativny st., Tomsk, 634009
E. O. Rodionov
Russian Federation
Evgeny O. Rodionov, MD, PhD, Senior Researcher, Department of Thoracic Oncology; Associate Professor, Department of Oncology
5, Kooperativny st., Tomsk, 634009
2, Moskovsky trakt, Tomsk, 634050
S. V. Miller
Russian Federation
Sergey V. Miller, MD, DSc, Head of the Thoracic Oncology Department
5, Kooperativny st., Tomsk, 634009
I. V. Kondakova
Russian Federation
Irina V. Kondakova, MD, DSc, Professor, Head of the Tumor Biochemistry Laboratory
5, Kooperativny st., Tomsk, 634009
References
1. Bray F., Laversanne M., Sung H., Ferlay J., Siegel R.L., Soerjomataram I., Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2024; 74(3): 229–63. doi: 10.3322/caac.21834.
2. Lin L., Li Z., Yan L., Liu Y., Yang H., Li H. Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990–2019. J Hematol Oncol. 2021; 14(1): 197. doi: 10.1186/s13045-021-01213-z.
3. Thandra K.C., Barsouk A., Saginala K., Aluru J.S., Barsouk A. Epidemiology of lung cancer. Contemp Oncol (Pozn). 2021; 25(1): 45–52. doi: 10.5114/wo.2021.103829.
4. Travis W.D. Lung Cancer Pathology. Clin Chest Med. 2020; 41(1): 67–85. doi: 10.1016/j.ccm.2019.11.001.
5. Leiter A., Veluswamy R.R., Wisnivesky J.P. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023; 20(9): 624–39. doi: 10.1038/s41571-023-00798-3.
6. Malignant tumors in Russia in 2023 (morbidity and mortality). Ed. by A.D. Kaprin, V.V. Starinsky, A.O. Shakhzadova. Moscow, 2024. 276 p. (in Russian). ISBN: 978-5-85502-298-8.
7. Zhu T., Bao X., Chen M., Lin R., Zhuyan J., Zhen T., Xing K., Zhou W., Zhu S. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis. Front Oncol. 2020; 10: 585284. doi: 10.3389/fonc.2020.585284.
8. Capodiferro S., d’Amati A., Barile G., Dell’Olio F., Limongelli L., Tempesta A., Siciliani R.A., Ingravallo G., Mastropasqua M., Colella G., Boschetti C.E., Copelli C., Maiorano E., Favia G. Metastatic Lung Cancer to the Head and Neck: A Clinico-Pathological Study on 21 Cases with Narrative Review of the Literature. J Clin Med. 2023; 12(4): 1429. doi: 10.3390/jcm12041429.
9. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA: Cancer J Clin. 2020; 70(1): 7–30. doi: 10.3322/caac.21590.
10. He Y., Luo W., Liu Y., Wang Y., Ma C., Wu Q., Tian P., He D., Jia Z., Lv X., Ma Y.S., Yang H., Xu K., Zhang X., Xiao Y., Zhang P., Liang Y., Fu D., Yao F., Hu G. IL-20RB mediates tumoral response to osteoclastic niches and promotes bone metastasis of lung cancer. J Clin Invest. 2022; 132(20): e157917. doi: 10.1172/JCI157917.
11. Greenlee J.D., King M.R. Engineered fluidic systems to understand lymphatic cancer metastasis. Biomicrofluidics. 2020; 14(1): 011502. doi: 10.1063/1.5133970.
12. Zhang X., Ma L., Xue M., Sun Y., Wang Z. Advances in lymphatic metastasis of non-small cell lung cancer. Cell Commun Signal. 2024; 22(1): 201. doi: 10.1186/s12964-024-01574-1.
13. Chowdhury M., Enenkel C. Intracellular dynamics of the ubiquitin-proteasome-system. F1000Res. 2015; 4: 367. doi: 10.12688/f1000research.6835.2.
14. Oh I.S., Textoris-Taube K., Sung P.S., Kang W., Gorny X., Kähne T., Hong S.H., Choi Y.J., Cammann C., Naumann M., Kim J.H., Park S.H., Yoo O.J., Kloetzel P.M., Seifert U., Shin E.C. Immunoproteasome induction is suppressed in hepatitis C virus-infected cells in a protein kinase R-dependent manner. Exp Mol Med. 2016; 48(11): e270. doi: 10.1038/emm.2016.98.
15. Çetin G., Klafack S., Studencka-Turski M., Krüger E., Ebstein F. The Ubiquitin–Proteasome System in Immune Cells. Biomolecules. 2021; 11(1): 60. doi: 10.3390/biom11010060.
16. Podgrabinska S., Skobe M. Role of lymphatic vasculature in regional and distant metastases. Microvasc Res. 2014; 95: 46–52. doi: 10.1016/j.mvr.2014.07.004.
17. Akopov A.L. Surgical diagnosis of the degree of lymphogenic metastasis of lung cancer. Grekov’s Bulletin of Surgery. 2007; 166(2): 105–9. (in Russian). EDN: ISCWIV.
18. Gregor A., Ujiie H., Yasufuku K. Sentinel lymph node biopsy for lung cancer. Gen Thorac Cardiovasc Surg. 2020; 68: 1061–78. doi: 10.1007/s11748-020-01432-0.
19. Pankova O.V., Rodionov E.O., Miller S.V., Tuzikov S.A., Tashireva L.A., Gerashchenko T.S., Denisov E.V., Perelmuter V.M. Neoadjuvant chemotherapy combined with intraoperative radiotherapy is effective to prevent recurrence in high-risk non-small cell lung cancer (NSCLC) patients. Transl Lung Cancer Res. 2020; 9(4): 988–99. doi: 10.21037/tlcr-19-719.
20. Brown M., Assen F.P., Leithner A., Abe J., Schachner H., Asfour G., Bago-Horvath Z., Stein J.V., Uhrin P., Sixt M., Kerjaschki D. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. 2018; 359(6382): 1408–11. doi: 10.1126/science.aal3662.
21. Maehana S., Nakamura M., Ogawa F., Imai R., Murakami R., Kojima F., Majima M., Kitasato H. Suppression of lymphangiogenesis by soluble vascular endothelial growth factor receptor-2 in a mouse lung cancer model. Biomed Pharmacother. 2016; 84: 660–65. doi: 10.1016/j.biopha.2016.09.083.
22. Sun L., Zhang Q., Li Y., Tang N., Qiu X. CCL21/CCR7 up-regulate vascular endothelial growth factor-D expression via ERK pathway in human non-small cell lung cancer cells. Int J Clin Exp Pathol. 2015; 8(12): 15729–38.
23. Kuonqui K., Campbell A.-C., Sarker A., Roberts A., Pollack B.L., Park H.J., Shin J., Brown S., Mehrara B.J., Kataru R.P. Dysregulation of Lymphatic Endothelial VEGFR3 Signaling in Disease. Cells. 2023; 13(1): 68. doi: 10.3390/cells13010068.
24. Chanvorachote P., Petsri K., Thongsom S. Epithelial to Mesenchymal Transition in Lung Cancer: Potential EMT-Targeting Natural Product-derived Compounds. Anticancer Res. 2022; 42(9): 4237–46. doi: 10.21873/anticanres.15923.
25. Oliver G., Kipnis J., Randolph G.J., Harvey N.L. The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell. 2020; 182(2): 270–96. doi: 10.1016/j.cell.2020.06.039.
26. Diao X., Guo C, Zheng H., Zhao K., Luo Y., An M., Lin Y., Chen J., Li Y., Li Y., Gao X., Zhang J., Zhou M., Bai W., Liu L., Wang G., Zhang L., He X., Zhang R., Li Z., Chen C., Li S. SUMOylation-triggered ALIX activation modulates extracellular vesicles circTLCD4-RWDD3 to promote lymphatic metastasis of non-small cell lung cancer. Signal Transduct Target Ther. 2023; 8(1): 426. doi: 10.1038/s41392-023-01685-0.
27. Dieterich L.C., Tacconi C., Ducoli L., Detmar M. Lymphatic vessels in cancer. Physiol Rev. 2022; 102(4): 1837–79. doi: 10.1152/physrev.00039.2021.
28. Liu J., Liu C., Qiu L., Li J., Zhang P., Sun Y. Overexpression of both platelet-derived growth factor-BB and vascular endothelial growth factor-C and its association with lymphangiogenesis in primary human non-small cell lung cancer. Diagn Pathol. 2014; 9: 128. doi: 10.1186/1746-1596-9-128.
29. Donnem T., Al-Saad S., Al-Shibli K., Busund L.T., Bremnes R.M. Co-expression of PDGF-B and VEGFR-3 strongly correlates with lymph node metastasis and poor survival in non-small-cell lung cancer. Ann Oncol. 2010; 21: 223–31. doi: 10.1093/annonc/mdp296.
30. Gengenbacher N., Singhal M., Mogler C., Hai L., Milde L., Pari A.A.A., Besemfelder E., Fricke C., Baumann D., Gehrs S., Utikal J., Felcht M., Hu .J., Schlesner M., Offringa R., Chintharlapalli S.R., Augustin H.G. Timed Ang2-targeted therapy identifies the angiopoietin–tie pathway as key regulator of fatal lymphogenous metastasis. Cancer Discov. 2021; 11(2): 424–45. doi: 10.1158/2159-8290.CD-20-0122.
31. Chandrasekaran S., King M.R. Microenvironment of Tumor-Draining Lymph Nodes: Opportunities for Liposome-Based Targeted Therapy. Int J Mol Sci. 2014; 15(11): 20209–39. doi: 10.3390/ijms151120209.
32. Farnsworth R.H., Achen M.G., Stacker S.A. The evolving role of lymphatics in cancer metastasis. Curr Opin Immunol. 2018; 53: 64–73. doi: 10.1016/j.coi.2018.04.008.
33. Paduch R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol. 2016; 39(5): 397–410. doi: 10.1007/s13402-016-0281-9.
34. Garnier L., Gkountidi A.O., Hugues S. Tumor-Associated Lymphatic Vessel Features and Immunomodulatory Functions. Front Immunol. 2019; 10: 720. doi: 10.3389/fimmu.2019.00720.
35. Tewalt E.F., Cohen J.N., Rouhani S.J., Guidi C.J., Qiao H., Fahl S.P., Conaway M.R., Bender T.P., Tung K.S., Vella A.T., Adler A.J., Chen L., Engelhard V.H. Lymphatic endothelial cells induce tolerance via PD-L1 and lack of costimulation leading to high-level PD-1 expression on CD8 T cells. Blood. 2012; 120(24): 4772–82. doi: 10.1182/blood-2012-04-427013.
36. Mitchell K.G., Negrao M.V., Parra E.R., Li J., Zhang J., Dejima H., Vaporciyan A.A., Swisher S.G., Weissferdt A., Antonoff M.B., Cascone T., Roarty E., Wistuba I.I., Heymach J.V., Gibbons D.L., Zhang J., Sepesi B. Lymphovascular Invasion Is Associated with Mutational Burden and PDL1 in Resected Lung Cancer. Ann Thorac Surg. 2020; 109(2): 358–66. doi: 10.1016/j.athoracsur.2019.08.029.
37. Raniszewska A., Vroman H., Dumoulin D., Cornelissen R., Aerts J.G.J.V., Domagała-Kulawik J. PD-L1+ lung cancer stem cells modify the metastatic lymph-node immunomicroenvironment in NSCLC patients. Cancer Immunol Immunother. 2021; 70(2): 453–61. doi:10.1007/s00262-020-02648-y.
38. Spirina L.V., Kondakova I.V. Role of intracellular specific proteolysis in tumorigenesis. Problems in Oncology. 2008; 54: 690–94. (in Russian). EDN: JTZMAT.
39. Kakurina G.V., Cheremisina O.V., Choinzonov E.L., Kondakova I.V. Circulating proteasomes in the pathogenesis of head and neck squamous cell carcinoma. Bulletin of Experimental Biology & Medicine. 2017; 163(1): 92–94. (in Russian). doi: 10.1007/s10517-017-3745-7. EDN: XNNIYC.
40. Chen S., Wu J., Lu Y., Ma Y.-B., Lee B.-H., Yu Z., Ouyang Q., Finley D.J., Kirschner M.W., Mao Y. Structural basis for dynamic regulation of the human 26S proteasome. Proc Natl Acad Sci USA. 2016; 113(46): 12991–96. doi: 10.1073/pnas.1614614113.
41. Kish-Trier E., Hill C.P. Structural biology of the proteasome. Annu Rev Biophys. 2013; 42: 29–49. doi: 10.1146/annurev-biophys-083012-130417.
42. Thomas T., Salcedo-Tacuma D., Smith D.M. Structure, function, and allosteric regulation of the 20S proteasome by the 11S/PA28 family of proteasome activators. Biomolecules. 2023; 13(9): 1326. doi: 10.3390/biom13091326.
43. Schweitzer A., Aufderheide A., Rudack T., Beck F., Pfeifer G., Plitzko J.M., Sakata E., Schulten K., Förster F., Baumeister W. Structure of the human 26S proteasome at a resolution of 3.9 Å. Proc Natl Acad Sci USA. 2016; 113(28): 7816–21. doi: 10.1073/pnas.1608050113.
44. Spirina L.V., Kondakova I.V., Usynin E.A., Kolomiets L.A., Choinzonov E.L., Mukhamedov M.R., Chernyshova A.L., Sharova N.P. Proteasome activity in cancer tissues. Siberian Journal of Oncology. 2009; 5: 49–52. (in Russian). EDN: KXGBIB.
45. Shashova E.E., Kolegova E.S., Zav’yalov A.A., Slonimskaya E.M., Kondakova I.V. Changes in the Activity of Proteasomes and Calpains in Metastases of Human Lung Cancer and Breast Cancer. Bull Exp Biol Med. 2017; 163(4): 486–89. doi: 10.1007/s10517-017-3834-7.
46. Santambrogio L., Berendam S.J., Engelhard V.H. The Antigen Processing and Presentation Machinery in Lymphatic Endothelial Cells. Front Immunol. 2019; 10: 1033. doi:10.3389/fimmu.2019.01033.
47. Rahimi N. The Ubiquitin-Proteasome System Meets Angiogenesis. Mol Cancer Ther. 2012; 11(3): 538–48. doi: 10.1158/1535-7163.MCT-11-0555.
48. Kolegova E.S., Shashova E.E., Kostromitskii D.N., Dobrodeev A.Yu., Kondakova I.V. Beta-Catenin in Non-Small Cells Lung Cancer and Its Association with Proteasomes. Bull Exp Biol Med. 2020; 168(5): 677–80. doi: 10.1007/s10517-020-04779-9.
49. Kolegova E.S., Kakurina G.V., Shashova E.E., Yunusova N.V., Spirina L.V., Sidenko E.A., Kostromitskiy D.N., Dobrodeev A.Y., Kondakova I.V. Relationship of intracellular proteolysis with CAP1 and cofilin1 in non-small-cell lung cancer. J Biosci. 2021; 46(3): 55. doi: 10.1007/s12038-021-00177-z.
50. Tripathi S.C., Peters H.L., Taguchi A., Katayama H., Wang H., Momin A., Jolly M.K., Celiktas M., Rodriguez-Canales J., Liu H., Behrens C., Wistuba I.I., Ben-Jacob E., Levine H., Molldrem J.J., Hanash S.M., Ostrin E.J. Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proc Natl Acad Sci USA. 2016; 113(11): E1555–64. doi: 10.1073/pnas.1521812113.
51. Shoji T., Kikuchi E., Kikuchi J., Takashima Y., Furuta M., Takahashi H., Tsuji K., Maeda M., Kinoshita I., Dosaka-Akita H., SakakibaraKonishi J., Konno S. Evaluating the immunoproteasome as a potential therapeutic target in cisplatin-resistant small cell and non-small cell lung cancer. Cancer Chemother Pharmacol. 2020; 85(5): 843–53. doi: 10.1007/s00280-020-04061-9.
52. Baker A.F., Hanke N.T., Sands B.J., Carbajal L., Anderl J.L., Garland L.L. Carfilzomib demonstrates broad anti-tumor activity in pre-clinical non-small cell and small cell lung cancer models. J Exp Clin Cancer Res. 2014; 33(1): 111. doi: 10.1186/s13046-014-0111-8.
53. Kakumu T., Sato M., Goto D., Kato T., Yogo N., Hase T., Morise M., Fukui T., Yokoi K., Sekido Y., Girard L., Minna J.D., Byers L.A., Heymach J.V., Coombes K.R., Kondo M., Hasegawa Y. Identification of proteasomal catalytic subunit PSMA6 as a therapeutic target for lung cancer. Cancer Sci. 2017; 108(4): 732–43. doi: 10.1111/cas.13185.
54. Shen S., Zhang Q., Wang Y., Chen H., Gong S., Liu Y., Gai C., Chen H., Zhu E., Yang B., Liu L., Cao S., Zhao M., Ren W., Li M., Peng Z., Zhang L., Zhang S., Shen J., Zhang B., Lee P.K., Li K., Li L., Yang H. Targeting ubiquitin-independent proteasome with small molecule increases susceptibility in pan-KRAS-mutant cancer models. J Clin Invest. 2025; 135(6): e185278. doi: 10.1172/JCI185278.
Review
For citations:
Sidenko E.A., Kakurina G.V., Yunusova N.V., Korshunov D.A., Mokh A.A., Rodionov E.O., Miller S.V., Kondakova I.V. The role of immune proteasomes in the mechanisms of lymphatic metastasis in non-small cell lung cancer. Siberian journal of oncology. 2025;24(4):147-154. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-4-147-154