Monogenic predisposition to colorectal cancer: features of carcinogenesis and translational aspects
https://doi.org/10.21294/1814-4861-2025-24-5-113-127
Abstract
Objective: to summarize existing information on hereditary types of colorectal cancer.
Material and Methods. A literature search was conducted in the Medline, Cochrane Library, and Elibrary databases, including publications from January 2002 to October 2025. Out of 3000 studies found, 79 were used to write this systematic review.
Results. Well-known hereditary colorectal cancer (CRC) varieties account for up to 4-5 % of all colorectal cancer cases. In addition to familial adenomatous polyposis, Lynch syndrome, and MUTYH-associated polyposis, at least 15 other, rarer nosological forms of hereditary CRC can be identified. Each of these diseases has a distinct clinical presentation and biological nature. These characteristics lead to differences in approaches to the prevention and treatment of various hereditary CRC subtypes. Unlike most hereditary tumor syndromes of other sites, which are typically autosomal dominant, some types of CRC are inherited via an autosomal recessive mechanism. The study of hereditary CRC contributes to the development of new approaches for treating sporadic colorectal tumors with somatic mutations in the same genes.
Conclusion. This review provides detailed information on the genetic causes, mechanisms of carcinogenesis, and clinical features of both well-known and recently discovered types of hereditary CRC.
Keywords
About the Authors
G. A. YanusRussian Federation
Grigoriy A. Yanus - MD, PhD, Researcher, N.N. Petrov National Medical Research Center of Oncology; Researcher, Saint Petersburg SPMU.
2, Litovskaya St., Saint Petersburg, 194100; 68, Leningradskaya St., Pesochny, Saint Petersburg, 197758
A. G. Iyevleva
Russian Federation
Aglaya G. Iyevleva - Senior Researcher, Laboratory of Molecular Oncology, N.N. Petrov National Medical Research Centre of Oncology; Associate Professor, Department of General and Molecular Genetics, Saint Petersburg SPMU.
2, Litovskaya St., Saint Petersburg, 194100; 68, Leningradskaya St., Pesochny, Saint Petersburg, 197758
A. Yu. Malygin
Russian Federation
Artur Yu. Malygin - MD, Oncologist, Clinical Diagnostic Department.
68, Leningradskaya St., Pesochny, Saint Petersburg, 197758
E. N. Suspitsin
Russian Federation
Evgeny N. Suspitsin - MD, DSc, Senior Researcher, Laboratory of Molecular Oncology, N.N. Petrov National Medical Research Centre of Oncology; Associate Professor, Department of General and Molecular Genetics, Saint Petersburg SPMU.
2, Litovskaya St., Saint Petersburg, 194100; 68, Leningradskaya St., Pesochny, Saint Petersburg, 197758
S. N. Aleksakhina
Russian Federation
Svetlana N. Aleksakhina - PhD, Senior Researcher, Researcher ID (WOS): B-2136-2013. Author ID (Scopus): 56003023200.
68, Leningradskaya St., Pesochny, Saint Petersburg, 197758
E. N. Imyanitov
Russian Federation
Evgeny N. Imyanitov - MD, DSc, Corresponding Member of the Russian Academy of Sciences, Head of the Department of General and Medical Molecular Genetics, Saint Petersburg SPMU; Head of the Research Division of Tumor Growth Biology, N.N. Petrov National Medical Research Centre of Oncology; Professor, Department of Oncology, I.I. Mechnikov North-Western SMU Author ID (Scopus): 7003644486.
2, Litovskaya St., Saint Petersburg, 194100; 68, Leningradskaya St., Pesochny, Saint Petersburg, 197758; 41, Kirochnaya St., Saint Petersburg, 191015
References
1. Win A.K., Jenkins M.A., Dowty J.G., Antoniou A.C., Lee A., Giles G.G., Buchanan D.D., Clendenning M., Rosty C., Ahnen D.J., Thibodeau S.N., Casey G., Gallinger S., le Marchand L., Haile R.W., Potter J.D., Zheng Y., Lindor N.M., Newcomb P.A., Hopper J.L., MacInnis R.J. Prevalence and Penetrance of Major Genes and Polygenes for Colorectal Cancer. Cancer Epidemiol Biomarkers Prev. 2017; 26(3): 404–12. doi: 10.1158/10559965.E.PI-16-0693.
2. Jenkins M.A., Baglietto L., Dite G.S., Jolley D.J., Southey M.C., Whitty J., Mead L.J., St John D.J., Macrae F.A., Bishop D.T., Venter D.J., Giles G.G., Hopper J.L. After hMSH2 and hMLH1--what next? Analysis of three-generational, population-based, early-onset colorectal cancer families. Int J Cancer. 2002; 102(2): 166–71. doi: 10.1002/ijc.10670.
3. Gerstung M., Jolly C., Leshchiner I., Dentro S.C., Gonzalez S., Rosebrock D., Mitchell T.J., Rubanova Y., Anur P., Yu K., Tarabichi M., Deshwar A., Wintersinger J., Kleinheinz K., Vázquez-García I., Haase K., Jerman L., Sengupta S., Macintyre G., Malikic S., Donmez N., Livitz D.G., Cmero M., Demeulemeester J., Schumacher S., Fan Y., Yao X., Lee J., Schlesner M., Boutros P.C., Bowtell D.D., Zhu H., Getz G., Imielinski M., Beroukhim R., Sahinalp S.C., Ji Y., Peifer M., Markowetz F., Mustonen V., Yuan K., Wang W., Morris Q.D.; PCAWG Evolution & Heterogeneity Working Group; Spellman P.T., Wedge D.C., van Loo P.; PCAWG Consortium. The evolutionary history of 2,658 cancers. Nature. 2020; 578(7793): 122–28. doi: 10.1038/s41586-019-1907-7.
4. Tümen D., Heumann P., Huber J., Hahn N., Macek C., Ernst M., Kandulski A., Kunst C., Gülow K. Unraveling Cancer’s Wnt Signaling: Dynamic Control through Protein Kinase Regulation. Cancers (Basel). 2024; 16(15): 2686. doi: 10.3390/cancers16152686.
5. Flanagan D.J., Pentinmikko N., Luopajärvi K., Willis N.J., Gilroy K., Raven A.P., Mcgarry L., Englund J.I., Webb A.T., Scharaw S., Nasreddin N., Hodder M.C., Ridgway R.A., Minnee E., Sphyris N., Gilchrist E., Najumudeen A.K., Romagnolo B., Perret C., Williams A.C., Clevers H., Nummela P., Lähde M., Alitalo K., Hietakangas V., Hedley A., Clark W., Nixon C., Kirschner K., Jones E.Y., Ristimäki A., Leedham S.J., Fish P.V., Vincent J.P., Katajisto P., Sansom O.J. NOTUM from Apc-mutant cells biases clonal competition to initiate cancer. Nature. 2021; 594(7863): 430–35. doi: 10.1038/s41586-021-03525-z.
6. Esplin E.D., Hanson C., Wu S., Horning A.M., Barapour N., Nevins S.A., Jiang L., Contrepois K., Lee H., Guha T.K., Hu Z., Laquindanum R., Mills M.A., Chaib H., Chiu R., Jian R., Chan J., Ellenberger M., Becker W.R., Bahmani B., Khan A., Michael B., Weimer A.K., Esplin D.G., Shen J., Lancaster S., Monte E., Karathanos T.V., Ladabaum U., Longacre T.A., Kundaje A., Curtis C., Greenleaf W.J., Ford J.M., Snyder M.P. Multiomic analysis of familial adenomatous polyposis reveals molecular pathways associated with early tumorigenesis. Nat Cancer. 2024; 5(11): 1737–53. doi: 10.1038/s43018-024-00831-z.
7. Poylin V.Y., Shaffer V.O., Felder S.I., Goldstein L.E., Goldberg J.E., Kalady M.F., Lightner A.L., Feingold D.L., Paquette I.M.; Clinical Practice Guidelines Committee of the American Society of Colon and Rectal Surgeons. The American Society of Colon and Rectal Surgeons Clinical Practice Guidelines for the Management of Inherited Adenomatous Polyposis Syndromes. Dis Colon Rectum. 2024; 67(2): 213–27. doi: 10.1097/DCR.0000000000003072.
8. Zaffaroni G., Mannucci A., Koskenvuo L., de Lacy B., Maffioli A., Bisseling T., Half E., Cavestro G.M., Valle L., Ryan N., Aretz S., Brown K., Buttitta F., Carneiro F., Claber O., Blanco-Colino R., Collard M., Crosbie E., Cunha M., Doulias T., Fleming C., Heinrich H., Hüneburg R., Metras J., Nagtegaal I., Negoi I., Nielsen M., Pellino G., Ricciardiello L., Sagir A., Sánchez-Guillén L., Seppälä T.T., Siersema P., Striebeck B., Sampson J.R., Latchford A., Parc Y., Burn J., Möslein G. Updated European guidelines for clinical management of familial adenomatous polyposis (FAP), MUTYH-associated polyposis (MAP), gastric adenocarcinoma, proximal polyposis of the stomach (GAPPS) and other rare adenomatous polyposis syndromes: a joint EHTG-ESCP revision. Br J Surg. 2024; 111(5): znae070. doi: 10.1093/bjs/znae070.
9. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Genetic/Familial High-Risk Assessment. Colorectal V.3.2024. ©National Comprehensive Cancer Network, Inc. 2024.
10. Lammi L., Arte S., Somer M., Jarvinen H., Lahermo P., Thesleff I., Pirinen S., Nieminen P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004; 74(5): 1043–50. doi: 10.1086/386293.
11. Leclerc J., Beaumont M., Vibert R., Pinson S., Vermaut C., Flament C., Lovecchio T., Delattre L., Demay C., Coulet F., Guillerm E., Hamzaoui N., Benusiglio P.R., Brahimi A., Cornelis F., Delhomelle H., Fert-Ferrer S., Fournier B.P.J., Hovnanian A., Legrand C., Lortholary A., Malka D., Petit F., Saurin J.C., Lejeune S., Colas C., Buisine M.P. AXIN2 germline testing in a French cohort validates pathogenic variants as a rare cause of predisposition to colorectal polyposis and cancer. Genes Chromosomes Cancer. 2023; 62(4): 210–22. doi: 10.1002/gcc.23112.
12. Ponti G., Castellsagué E., Ruini C., Percesepe A., Tomasi A. Mismatch repair genes founder mutations and cancer susceptibility in Lynch syndrome. Clin Genet. 2015; 87(6): 507–16. doi: 10.1111/cge.12529.
13. Pathak S.J., Mueller J.L., Okamoto K., Das B., Hertecant J., Greenhalgh L., Cole T., Pinsk V., Yerushalmi B., Gurkan O.E., Yourshaw M., Hernandez E., Oesterreicher S., Naik S., Sanderson I.R., Axelsson I., Agardh D., Boland C.R., Martin M.G., Putnam C.D., Sivagnanam M. EPCAM mutation update: Variants associated with congenital tufting enteropathy and Lynch syndrome. Hum Mutat. 2019; 40(2): 142–61. doi: 10.1002/humu.23688.
14. Sullivan B.A., Noujaim M., Roper J. Cause, Epidemiology, and Histology of Polyps and Pathways to Colorectal Cancer. Gastrointest Endosc Clin N Am. 2022; 32(2): 177–94. doi: 10.1016/j.giec.2021.12.001.
15. Moreira L., Balaguer F., Lindor N., de la Chapelle A., Hampel H., Aaltonen L.A., Hopper J.L., Le Marchand L., Gallinger S., Newcomb P.A., Haile R., Thibodeau S.N., Gunawardena S., Jenkins M.A., Buchanan D.D., Potter J.D., Baron J.A., Ahnen D.J., Moreno V., Andreu M., Ponz de Leon M., Rustgi A.K., Castells A.; EPICOLON Consortium. Identification of Lynch syndrome among patients with colorectal cancer. JAMA. 2012; 308(15): 1555–65. doi: 10.1001/jama.2012.13088.
16. Vos J.R., Fakkert I.E., Spruijt L., Willems R.W., Langenveld S., Mensenkamp A.R., Leter E.M., Nagtegaal ID., Ligtenberg M.J.L., Hoogerbrugge N.; FINAL Group. Evaluation of yield and experiences of age-related molecular investigation for heritable and nonheritable causes of mismatch repair deficient colorectal cancer to identify Lynch syndrome. Int J Cancer. 2020; 147(8): 2150–58. doi: 10.1002/ijc.33117.
17. Seppälä T.T., Latchford A., Negoi I., Sampaio Soares A., JimenezRodriguez R., Sánchez-Guillén L., Evans D.G., Ryan N., Crosbie E.J., Dominguez-Valentin M., Burn J., Kloor M., Knebel Doeberitz M.V., Duijnhoven F.J.B.V., Quirke P., Sampson J.R., Møller P., Möslein G.; European Hereditary Tumour Group (EHTG) and European Society of Coloproctology (ESCP). European guidelines from the EHTG and ESCP for Lynch syndrome: an updated third edition of the Mallorca guidelines based on gene and gender. Br J Surg. 2021; 108(5): 484–98. doi: 10.1002/bjs.11902.
18. Ahadova A., Gallon R., Gebert J., Ballhausen A., Endris V., Kirchner M., Stenzinger A., Burn J., von Knebel Doeberitz M., Bläker H., Kloor M. Three molecular pathways model colorectal carcinogenesis in Lynch syndrome. Int J Cancer. 2018; 143(1): 139–50. doi: 10.1002/ijc.31300.
19. Ahadova A., Stenzinger A., Seppälä T., Hüneburg R., Kloor M., Bläker H.; Lynpath Investigators. A “Two-in-One Hit” Model of Shortcut Carcinogenesis in MLH1 Lynch Syndrome Carriers. Gastroenterology. 2023; 165(1): 267–70. e4. doi: 10.1053/j.gastro.2023.03.007.
20. Engel C., Vasen H.F., Seppälä T., Aretz S., BigirwamunguBargeman M., de Boer S.Y., Bucksch K., Büttner R., Holinski-Feder E., Holzapfel S., Hüneburg R., Jacobs M.A.J.M., Järvinen H., Kloor M., von Knebel Doeberitz M., Koornstra J.J., van Kouwen M., Langers A.M., van de Meeberg P.C., Morak M., Möslein G., Nagengast F.M., Pylvänäinen K., Rahner N., Renkonen-Sinisalo L., Sanduleanu S., Schackert H.K., Schmiegel W., Schulmann K., Steinke-Lange V., Strassburg C.P., Vecht J., Verhulst M.L., de Vos Tot Nederveen Cappel W., Zachariae S., Mecklin J.P., Loeffler M.; German HNPCC Consortium, the Dutch Lynch Syndrome Collaborative Group, and the Finnish Lynch Syndrome Registry. No Difference in Colorectal Cancer Incidence or Stage at Detection by Colonoscopy Among 3 Countries With Different Lynch Syndrome Surveillance Policies. Gastroenterology. 2018; 155(5): 1400–1409.e2. doi: 10.1053/j.gastro.2018.07.030.
21. Seppälä T.T., Ahadova A., Dominguez-Valentin M., Macrae F., Evans D.G., Therkildsen C., Sampson J., Scott R., Burn J., Möslein G., Bernstein I., Holinski-Feder E., Pylvänäinen K., Renkonen-Sinisalo L., Lepistö A., Lautrup C.K., Lindblom A., Plazzer J.P., Winship I., Tjandra D., Katz L.H., Aretz S., Hüneburg R., Holzapfel S., Heinimann K., Valle A.D., Neffa F., Gluck N., de Vos Tot Nederveen Cappel W.H., Vasen H., Morak M., Steinke-Lange V., Engel C., Rahner N., Schmiegel W., Vangala D., Thomas H., Green K., Lalloo F., Crosbie E.J., Hill J., Capella G., Pineda M., Navarro M., Blanco I., Ten Broeke S., Nielsen M., Ljungmann K., Nakken S., Lindor N., Frayling I., Hovig E., Sunde L., Kloor M., Mecklin J.P., Kalager M., Møller P. Lack of association between screening interval and cancer stage in Lynch syndrome may be accounted for by over-diagnosis; a prospective Lynch syndrome database report. Hered Cancer Clin Pract. 2019; 17: 8. doi: 10.1186/s13053-019-0106-8.
22. Dominguez-Valentin M., Haupt S., Seppälä T.T., et al. Mortality by age, gene and gender in carriers of pathogenic mismatch repair gene variants receiving surveillance for early cancer diagnosis and treatment: a report from the prospective Lynch syndrome database. E.ClinicalMedicine. 2023; 58: 101909. doi: 10.1016/j.eclinm.2023.101909.
23. Castillo-Iturra J., Sánchez A., Balaguer F. Colonoscopic surveillance in Lynch syndrome: guidelines in perspective. Fam Cancer. 2024; 23(4): 459–68. doi: 10.1007/s10689-024-00414-y.
24. Miyakura Y., Chino A., Tanakaya K., Lefor A.K., Akagi K., Takao A., Yamada M., Ishida H., Komori K., Sasaki K., Miguchi M., Hirata K., Sudo T., Ishikawa T., Yamaguchi T., Tomita N., Ajioka Y. Current practice of colonoscopy surveillance in patients with lynch syndrome: A multicenter retrospective cohort study in Japan. DEN Open. 2022; 3(1): e179. doi: 10.1002/deo2.179.
25. Burn J., Sheth H., Elliott F., Reed L., Macrae F., Mecklin J.P., Möslein G., McRonald F.E., Bertario L., Evans D.G., Gerdes A.M., Ho J.W.C., Lindblom A., Morrison P.J., Rashbass J., Ramesar R., Seppälä T., Thomas H.J.W., Pylvänäinen K., Borthwick G.M., Mathers J.C., Bishop D.T.; CAPP2 Investigators. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet. 2020; 395(10240): 1855–63. doi: 10.1016/S0140-6736(20)30366-4.
26. Das A., MacFarland S.P., Meade J., Hansford J.R., Schneider K.W., Kuiper R.P., Jongmans M.C.J., Lesmana H., Schultz K.A.P., Nichols K.E., Durno C., Zelley K., Porter C.C., States L.J., Ben-Shachar S., Savage S.A., Kalish J.M., Walsh M.F., Scott H.S., Plon S.E., Tabori U. Clinical Updates and Surveillance Recommendations for DNA Replication Repair Deficiency Syndromes in Children and Young Adults. Clin Cancer Res. 2024; 30(16): 3378–87. doi: 10.1158/1078-0432.C.CR-23-3994.
27. Gallon R., Brekelmans C., Martin M., Bours V., Schamschula E., Amberger A., Muleris M., Colas C., Dekervel J., de Hertogh G., Coupier J., Colleye O., Sepulchre E., Burn J., Brems H., Legius E., Wimmer K. Constitutional mismatch repair deficiency Constitutional mismatch repair deficiency mimicking Lynch syndrome is associated with hypomorphic mismatch repair gene variants. NPJ Precis Oncol. 2024; 8(1): 119. doi: 10.1038/s41698-024-00603-z.
28. Aretz S., Tricarico R., Papi L., Spier I., Pin E., Horpaopan S., Cordisco E.L., Pedroni M., Stienen D., Gentile A., Panza A., Piepoli A., de Leon M.P., Friedl W., Viel A., Genuardi M. MUTYH-associated polyposis (M.AP): evidence for the origin of the common European mutations p.Tyr179Cys and p.Gly396Asp by founder events. Eur J Hum Genet. 2014; 22(7): 923–29. doi: 10.1038/ejhg.2012.309.
29. Park J.E., Lee T., Cho E.H., Jang M.A., Won D., Park B., Ki C.S., Kong S.Y. Carrier Frequency and Incidence of MUTYH-Associated Polyposis Based on Database Analysis in East Asians and Koreans. Ann Lab Med. 2025; 45(1): 77–84. doi: 10.3343/alm.2024.0242.
30. Aelvoet A.S., Buttitta F., Ricciardiello L., Dekker E. Management of familial adenomatous polyposis and MUTYH-associated polyposis; new insights. Best Pract Res Clin Gastroenterol. 2022; 58–59: 101793. doi: 10.1016/j.bpg.2022.101793.
31. Robinson P.S., Thomas L.E., Abascal F., Jung H., Harvey L.M.R., West H.D., Olafsson S., Lee B.C.H., Coorens T.H.H., Lee-Six H., Butlin L., Lander N., Truscott R., Sanders M.A., Lensing S.V., Buczacki S.J.A., Ten Hoopen R., Coleman N., Brunton-Sim R., Rushbrook S., Saeb-Parsy K., Lalloo F., Campbell P.J., Martincorena I., Sampson J.R., Stratton M.R. Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nat Commun. 2022; 13(1): 3949. doi: 10.1038/s41467-022-31341-0.
32. Sherwood K., Ward J.C., Soriano I., Martin L., Campbell A., Rahbari R., Kafetzopoulos I., Sproul D., Green A., Sampson J.R., Donaldson A., Ong K.R., Heinimann K., Nielsen M., Thomas H., Latchford A., Palles C., Tomlinson I. Germline de novo mutations in families with Mendelian cancer syndromes caused by defects in DNA repair. Nat Commun. 2023; 14(1): 3636. doi: 10.1038/s41467-023-39248-0.
33. Disel U., Sivakumar S., Pham T., Fleischmann Z., Anu R.I., Sokol E.S., Kurzrock R. Increased KRAS G12C Prevalence, High Tumor Mutational Burden, and Specific Mutational Signatures Are Associated With MUTYH Mutations: A Pan-Cancer Analysis. Oncologist. 2024; 29(2): 213–23. doi: 10.1093/oncolo/oyad230.
34. Volkov N.M., Yanus G.A., Ivantsov A.O., Moiseenko F.V., Matorina O.G., Bizin I.V., Moiseyenko V.M., Imyanitov E.N. Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer. Invest New Drugs. 2020; 38(3): 894–98. doi: 10.1007/s10637019-00842-z.
35. Mathias-Machado M.C., Peixoto R.D., Ashton-Prolla P., da Silva L.M., Dienstmann R. Complete Response to Immunotherapy in a Patient with MUTYH-Associated Polyposis and Gastric Cancer: A Case Report. Case Rep Oncol. 2023; 16(1): 504–10. doi: 10.1159/000530965.
36. Grolleman J.E., de Voer R.M., Elsayed F.A., Nielsen M., Weren R.D.A., Palles C., Ligtenberg M.J.L., Vos J.R., Ten Broeke S.W., de Miranda N.F.C.C., Kuiper R.A., Kamping E.J., Jansen E.A.M., Vink-Börger M.E., Popp I., Lang A., Spier I., Hüneburg R., James P.A., Li N., Staninova M., Lindsay H., Cockburn D., Spasic-Boskovic O., Clendenning M., Sweet K., Capellá G., Sjursen W., Høberg-Vetti H., Jongmans M.C., Neveling K., Geurts van Kessel A., Morreau H., Hes F.J., Sijmons R.H., Schackert H.K., Ruiz-Ponte C., Dymerska D., Lubinski J., Rivera B., Foulkes W.D., Tomlinson I.P., Valle L., Buchanan D.D., Kenwrick S., Adlard J., Dimovski A.J., Campbell I.G., Aretz S., Schindler D., van Wezel T., Hoogerbrugge N., Kuiper R.P. Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multitumor Phenotype. Cancer Cell. 2019; 35(2): 256–66. e5. doi: 10.1016/j.ccell.2018.12.011.
37. Palles C., West H.D., Chew E., Galavotti S., Flensburg C., Grolleman J.E., Jansen E.A.M., Curley H., Chegwidden L., Arbe-Barnes E.H., Lander N., Truscott R., Pagan J., Bajel A., Sherwood K., Martin L., Thomas H., Georgiou D., Fostira F., Goldberg Y., Adams D.J., van der Biezen S.A.M., Christie M., Clendenning M., Thomas L.E., Deltas C., Dimovski A.J., Dymerska D., Lubinski J., Mahmood K., van der Post R.S., Sanders M., Weitz J., Taylor J.C., Turnbull C., Vreede L., van Wezel T., Whalley C., Arnedo-Pac C., Caravagna G., Cross W., Chubb D., Frangou A., Gruber A.J., Kinnersley B., Noyvert B., Church D., Graham T., Houlston R., Lopez-Bigas N., Sottoriva A., Wedge D.; Genomics England Research Consortium; CORGI Consortium; WGS500 Consortium; Jenkins M.A., Kuiper R.P., Roberts A.W., Cheadle J.P., Ligtenberg M.J.L., Hoogerbrugge N., Koelzer V.H., Rivas A.D., Winship I.M., Ponte C.R., Buchanan D.D., Power D.G., Green A., Tomlinson I.P.M., Sampson J.R., Majewski I.J., de Voer R.M. Germline MBD4 deficiency causes a multi-tumor predisposition syndrome. Am J Hum Genet. 2022; 109(5): 953–60. doi: 10.1016/j.ajhg.2022.03.018.
38. Beck S.H., Jelsig A.M., Yassin H.M., Lindberg L.J., Wadt K.A.W., Karstensen J.G. Intestinal and extraintestinal neoplasms in patients with NTHL1 tumor syndrome: a systematic review. Fam Cancer. 2022; 21(4): 453–62. doi: 10.1007/s10689-022-00291-3.
39. Olkinuora A.P., Mayordomo A.C., Kauppinen A.K., Cerliani M.B., Coraglio M., Collia Á.K., Gutiérrez A., Alvarez K., Cassana A., LopézKöstner F., Jauk F., García-Rivello H., Ristimäki A., Koskenvuo L., Lepistö A., Nieminen T.T., Vaccaro C.A., Pavicic W.H., Peltomäki P. Monoand biallelic germline variants of DNA glycosylase genes in colon adenomatous polyposis families from two continents. Front Oncol. 2022; 12: 870863. doi: 10.3389/fonc.2022.870863.
40. Vuković Đerfi K., Salar A., Cacev T., Kapitanović S. EMAST Type of Microsatellite Instability-A Distinct Entity or Blurred Overlap between Stable and MSI Tumors.Genes (Basel). 2023; 14(7): 1474. doi: 10.3390/genes14071474.
41. Adam R., Spier I., Zhao B., Kloth M., Marquez J., Hinrichsen I., Kirfel J., Tafazzoli A., Horpaopan S., Uhlhaas S., Stienen D., Friedrichs N., Altmüller J., Laner A., Holzapfel S., Peters S., Kayser K., Thiele H., Holinski-Feder E., Marra G., Kristiansen G., Nöthen M.M., Büttner R., Möslein G., Betz R.C., Brieger A., Lifton R.P., Aretz S. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. Am J Hum Genet. 2016; 99(2): 337–51. doi: 10.1016/j.ajhg.2016.06.015.
42. Chen M.H., Chang S.C., Lin P.C., Yang S.H., Lin C.C., Lan Y.T., Lin H.H., Lin C.H., Lai J.I., Liang W.Y., Lu M.L., Yang M.H., Chao Y. Combined Microsatellite Instability and Elevated Microsatellite Alterations at Selected Tetranucleotide Repeats (EMAST) Might Be a More Promising Immune Biomarker in Colorectal Cancer. Oncologist. 2019; 24(12): 1534–42. doi: 10.1634/theoncologist.2019-0171.
43. Salo-Mullen E.E., Maio A., Mukherjee S., Bandlamudi C., Shia J., Kemel Y., Cadoo K.A., Liu Y., Carlo M., Ranganathan M., Kane S., Srinivasan P., Chavan S.S., Donoghue M.T.A., Bourque C., Sheehan M., Tejada P.R., Patel Z., Arnold A.G., Kennedy J.A., Amoroso K., Breen K., Catchings A., Sacca R., Marcell V., Markowitz A.J., Latham A., Walsh M., Misyura M., Ceyhan-Birsoy O., Solit D.B., Berger M.F., Robson M.E., Taylor B.S., Offit K., Mandelker D., Stadler Z.K. Prevalence and Characterization of Biallelic and Monoallelic NTHL1 and MSH3 Variant Carriers From a Pan-Cancer Patient Population. JCO Precis Oncol. 2021; 5: P.O.20.00443. doi: 10.1200/P.O.20.00443.
44. Koi M., Leach B.H., McGee S., Tseng-Rogenski S.S., Burke C.A., Carethers J.M. Compound heterozygous MSH3 germline variants and associated tumor somatic DNA mismatch repair dysfunction. N.PJ Precis Oncol. 2024; 8(1): 12. doi: 10.1038/s41698-024-00511-2.
45. Olkinuora A., Nieminen T.T., Mårtensson E., Rohlin A., Ristimäki A., Koskenvuo L., Lepistö A.; Swedish Extended Genetic Analysis of Colorectal Neoplasia (SWEN) Study Group; Gebre-Medhin S., Nordling M., Peltomäki P. Biallelic germline nonsense variant of MLH3 underlies polyposis predisposition. Genet Med. 2019; 21(8): 1868–73. doi: 10.1038/s41436-018-0405-x.
46. Ambrosini M., Rousseau B., Manca P., Artz O., Marabelle A., André T., Maddalena G., Mazzoli G., Intini R., Cohen R., Cercek A., Segal N.H., Saltz L., Varghese A.M., Yaeger R., Nusrat M., Goldberg Z., Ku G.Y., El Dika I., Margalit O., Grinshpun A., Murtaza Kasi P., Schilsky R., Lutfi A., Shacham-Shmueli E., Khan Afghan M., Weiss L., Westphalen C.B., Conca V., Decker B., Randon G., Elez E., Fakih M., Schrock A.B., Cremolini C., Jayachandran P., Overman M.J., Lonardi S., Pietrantonio F. Immune checkpoint inhibitors for POLE or POLD1 proofreading-deficient metastatic colorectal cancer. Ann Oncol. 2024; 35(7): 643–55. doi: 10.1016/j.annonc.2024.03.009.
47. Palles C., Martin L., Domingo E., Chegwidden L., McGuire J., Cuthill V., Heitzer E.; CORGI Consortium; Kerr R., Kerr D., Kearsey S., Clark S.K., Tomlinson I., Latchford A. The clinical features of polymerase proof-reading associated polyposis (PPAP) and recommendations for patient management. Fam Cancer. 2022; 21(2): 197–209. doi: 10.1007/s10689-021-00256-y.
48. Mur P., Viana-Errasti J., García-Mulero S., Magraner-Pardo L., Muñoz I.G., Pons T., Capellá G., Pineda M., Feliubadaló L., Valle L. Recommendations for the classification of germline variants in the exonuclease domain of POLE and POLD1.Genome Med. 2023; 15(1): 85. doi: 10.1186/s13073-023-01234-y.
49. Hühns M., Nürnberg S., Kandashwamy K.K., Maletzki C., Bauer P., Prall F. High mutational burden in colorectal carcinomas with monoallelic POLE mutations: absence of allelic loss and gene promoter methylation. Mod Pathol. 2020; 33(6): 1220–31. doi: 10.1038/s41379-019-0430-6.
50. Andrianova M.A., Seplyarskiy V.B., Terradas M., Sánchez-Heras A.B., Mur P., Soto J.L., Aiza G., Borràs E., Kondrashov F.A., Kondrashov A.S., Bazykin G.A., Valle L. Discovery of recessive effect of human polymerase delta proofreading deficiency through mutational analysis of POLD1mutated normal and cancer cells. Eur J Hum Genet. 2024; 32(7): 837–45. doi: 10.1038/s41431-024-01598-8.
51. Haradhvala N.J., Kim J., Maruvka Y.E., Polak P., Rosebrock D., Livitz D., Hess J.M., Leshchiner I., Kamburov A., Mouw K.W., Lawrence M.S., Getz G. Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair. Nat Commun. 2018; 9(1): 1746. doi: 10.1038/s41467-018-04002-4.
52. Robinson P.S., Coorens T.H.H., Palles C., Mitchell E., Abascal F., Olafsson S., Lee B.C.H., Lawson A.R.J., Lee-Six H., Moore L., Sanders M.A., Hewinson J., Martin L., Pinna C.M.A., Galavotti S., Rahbari R., Campbell P.J., Martincorena I., Tomlinson I., Stratton M.R. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nat Genet. 2021; 53(10): 1434–42. doi: 10.1038/s41588-02100930-y.
53. Buchanan D.D., Stewart J.R., Clendenning M., Rosty C., Mahmood K., Pope B.J., Jenkins M.A., Hopper J.L., Southey M.C., Macrae F.A., Winship I.M., Win A.K. Risk of colorectal cancer for carriers of a germ-line mutation in POLE or POLD1. Genet Med. 2018; 20(8): 890–95. doi: 10.1038/gim.2017.185.
54. Sehested A., Meade J., Scheie D., Østrup O., Bertelsen B., Misiakou M.A., Sarosiek T., Kessler E., Melchior L.C., Munch-Petersen H.F., Pai R.K., Schmuth M., Gottschling H., Zschocke J., Gallon R., Wimmer K. Constitutional POLE variants causing a phenotype reminiscent of constitutional mismatch repair deficiency. Hum Mutat. 2022; 43(1): 85–96. doi: 10.1002/humu.24299.
55. Yan H.H.N., Lai J.C.W., Ho S.L., Leung W.K., Law W.L., Lee J.F.Y., Chan A.K.W., Tsui W.Y., Chan A.S.Y., Lee B.C.H., Yue S.S.K., Man A.H.Y., Clevers H., Yuen S.T., Leung S.Y. RNF43 germline and somatic mutation in serrated neoplasia pathway and its association with BRAF mutation. Gut. 2017; 66(9): 1645–56. doi: 10.1136/gutjnl-2016-311849.
56. Carballal S., Balaguer F., IJspeert J.E.G. Serrated polyposis syndrome; epidemiology and management. Best Pract Res Clin Gastroenterol. 2022; 58–59: 101791. doi: 10.1016/j.bpg.2022.101791.
57. Chan J.M., Clendenning M., Joseland S., Georgeson P., Mahmood K., Joo J.E., Walker R., Como J., Preston S., Chai S.M., Chu Y.L., Meyers A.L., Pope B.J., Duggan D., Fink J.L., Macrae F.A., Rosty C., Winship I.M., Jenkins M.A., Buchanan D.D. Inherited BRCA1 and RNF43 pathogenic variants in a familial colorectal cancer type X family. Fam Cancer. 2024; 23(1): 9–21. doi: 10.1007/s10689-023-00351-2.
58. Brinch H.H., Byrjalsen A., Lohse Z., Rasmussen A.Ø., Karstensen J.G., Kristiansen B.S., Jelsig A.M. Germline pathogenic variants in RNF43 in patients with and without serrated polyposis syndrome. Fam Cancer. 2024; 24(1): 3. doi: 10.1007/s10689-024-00428-6.
59. Murphy A., Solomons J., Risby P., Gabriel J., Bedenham T., Johnson M., Atkinson N., Bailey A.A., Bird-Lieberman E., Leedham S.J., East J.E., Biswas S. Germline variant testing in serrated polyposis syndrome. J Gastroenterol Hepatol. 2022; 37(5): 861–69. doi: 10.1111/jgh.15791.
60. Chen H.Y., Jin X.W., Li B.R., Zhu M., Li J., Mao G.P., Zhang Y.F., Ning S.B. Cancer risk in patients with Peutz-Jeghers syndrome: A retrospective cohort study of 336 cases. Tumour Biol. 2017; 39(6): 1010428317705131. doi: 10.1177/1010428317705131.
61. Yehia L., Heald B., Eng C. Clinical Spectrum and Science Behind the Hamartomatous Polyposis Syndromes. Gastroenterology. 2023; 164(5): 800–811. doi: 10.1053/j.gastro.2023.01.026.
62. Taylor H., Yerlioglu D., Phen C., Ballauff A., Nedelkopoulou N., Spier I., Loverdos I., Busoni V.B., Heise J., Dale P., de Meij T., Sweet K., Cohen M.C., Fox V.L., Mas E., Aretz S., Eng C., Buderus S., Thomson M., Rojas I., Uhlig H.H. mTOR inhibitors reduce enteropathy, intestinal bleeding and colectomy rate in patients with juvenile polyposis of infancy with PTEN-BMPR1A deletion. Hum Mol Genet. 2021; 30(14): 1273–82. doi: 10.1093/hmg/ddab094.
63. Laitman Y., Jaeger E., Katz L., Tomlinson I., Friedman E. GREM1 germline mutation screening in Ashkenazi Jewish patients with familial colorectal cancer. Genet Res (Camb). 2015; 97: e11. doi: 10.1017/s0016672315000105.
64. Kim B.G., Li C., Qiao W., Mamura M., Kasprzak B., Anver M., Wolfraim L., Hong S., Mushinski E., Potter M., Kim S.J., Fu X.Y., Deng C., Letterio J.J. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature. 2006; 441(7096): 1015–19. doi: 10.1038/ nature04846.
65. Hahn J.N., Falck V.G., Jirik F.R. Smad4 deficiency in T cells leads to the Th17-associated development of premalignant gastroduodenal lesions in mice. J Clin Invest. 2011; 121(10): 4030–42. doi: 10.1172/J.CI45114.
66. Nieminen T.T., Abdel-Rahman W.M., Ristimäki A., Lappalainen M., Lahermo P., Mecklin J.P., Järvinen H.J., Peltomäki P. BMPR1A mutations in hereditary nonpolyposis colorectal cancer without mismatch repair deficiency. Gastroenterology. 2011; 141(1): e23–6. doi: 10.1053/j.gastro.2011.03.063.
67. Nieminen T.T., O’Donohue M.F., Wu Y., Lohi H., Scherer S.W., Paterson A.D., Ellonen P., Abdel-Rahman W.M., Valo S., Mecklin J.P., Järvinen H.J., Gleizes P.E., Peltomäki P. Germline mutation of RPS20, encoding a ribosomal protein, causes predisposition to hereditary nonpolyposis colorectal carcinoma without DNA mismatch repair deficiency. Gastroenterology. 2014; 147(3): 595–98.e5. doi: 10.1053/j.gastro.2014.06.009.
68. Guda K., Moinova H., He J., Jamison O., Ravi L., Natale L., Lutterbaugh J., Lawrence E., Lewis S., Willson J.K., Lowe J.B., Wiesner G.L., Parmigiani G., Barnholtz-Sloan J., Dawson D.W., Velculescu V.E., Kinzler K.W., Papadopoulos N., Vogelstein B., Willis J., Gerken T.A., Markowitz S.D. Inactivating germ-line and somatic mutations in polypeptide Nacetylgalactosaminyltransferase 12 in human colon cancers. Proc Natl Acad Sci U S A. 2009; 106(31): 12921–25. doi: 10.1073/pnas.0901454106.
69. Evans D.R., Venkitachalam S., Revoredo L., Dohey A.T., Clarke E., Pennell J.J., Powell A.E., Quinn E., Ravi L., Gerken T.A., Green J.S., Woods M.O., Guda K. Evidence for GALNT12 as a moderate penetrance gene for colorectal cancer. Hum Mutat. 2018; 39(8): 1092–1101. doi: 10.1002/humu.23549.
70. Belhadj S., Terradas M., Munoz-Torres P.M., Aiza G., Navarro M., Capellá G., Valle L. Candidate genes for hereditary colorectal cancer: Mutational screening and systematic review. Hum Mutat. 2020; 41(9): 1563–76. doi: 10.1002/humu.24057.
71. Feng Z., Yang X., Tian M., Zeng N., Bai Z., Deng W., Zhao Y., Guo J., Yang Y., Zhang Z., Yang Y. BRCA genes as candidates for colorectal cancer genetic testing panel: systematic review and meta-analysis. BMC Cancer. 2023; 23(1): 807. doi: 10.1186/s12885-023-11328-w.
72. Khabibullina L.R., Shcherbakova O.V., Shubin V.P., Razumovsky A.Yu., Tsukanov A.S. Genotype-phenotype correlation in children with adenomatous polyposis syndrome. Coloproctology. 2024; 23(3): 79–86. (in Russian). doi: 10.33878/2073-7556-2024-23-379-86. EDN: IKNVQE.
73. Yanus G.A., Akhapkina T.A., Ivantsov A.O., Preobrazhenskaya E.V., Aleksakhina S.N., Bizin I.V., Sokolenko A.P., Mitiushkina N.V., Kuligina E.S., Suspitsin E.N., Venina A.R., Holmatov M.M., Zaitseva O.A., Yatsuk O.S., Pashkov D.V., Belyaev A.M., Togo A.V., Imyanitov E.N., Iyevleva A.G. Spectrum of APC and MUTYH germ-line mutations in Russian patients with colorectal malignancies. Clin Genet. 2018; 93(5): 1015–21. doi: 10.1111/cge.13228.
74. Yanus G.A., Akhapkina T.A., Iyevleva A.G., Kornilov A.V., Suspitsin E.N., Kuligina E.S., Ivantsov A.O., Aleksakhina S.N., Sokolova T.N., Sokolenko A.P., Togo A.V., Imyanitov E.N. The spectrum of Lynch syndrome-associated germ-line mutations in Russia. Eur J Med Genet. 2020; 63(3): 103753. doi: 10.1016/j.ejmg.2019.103753.
75. Tsukanov A.S., Barinov A.A., Shubin V.P., Loginova A.N., Pikunov D.Yu., Shakhmatov D.G., Shelygin Yu.A., Achkasov S.I. Germline variants of the MMR/EPCAM genes in Russian patients with Lynch syndrome. Russian Open Medical Journal. 2024; 13(3): 308. doi: 10.15275/rusomj.2024.0308.
76. Loginova A.N., Shelygin Yu.A., Shubin V.P., Kuzminov A.M., Pikunov D.Yu., Saveleva T.A., Tsukanov A.S. Large Rearrangements in Genes Responsible for Familial Adenomatous Polyposis, MUTYH-Associated Polyposis and Peutz-Jeghers Syndrome in Russian Patients. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2023; 33(1): 59–67. (in Russian). doi: 10.22416/1382-4376-2023-33-1-59-67 EDN: AIMNPR.
77. Toboeva M.Kh., Pikunov D.Yu., Tsukanov A.S., Frolov S.A. Clinical and genetic features in patients with MutYH-associated polyposis. Problems in Oncology. 2020; 66(6): 673–78. (in Russian). doi: 10.37469/0507-3758-2020-66-6-673-678. EDN: DQYXLI.
78. Savelyeva Т.A., Ponomarenko А.A., Shelygin Y.A., Kuzminov А.M., Vyshegorodtsev D.V., Loginova А.N., Pikunov D.Y., Goncharova Е.P., Likutov А.A., Mainovskaya О.A., Tsukanov А.S. The course and clinical manifestations of PeutzJeghers syndrome in the Russian population. Terapevticheskii Arkhiv (Ter. Arkh.). 2023; 95(2): 145–51. (in Russian). doi: 10.26442/00403660.2023.02.202059. EDN: JXMXUH.
79. Shubin V.P., Pikunov D.Yu., Loginova A.N., Barinov A.A., Shelygin Yu.A., Tsukanov A.S. The role of molecular genetic research in the diagnosis of hereditary polyposis syndrome. Yakut Medical Journal. 2023; (2): 49–52. (in Russian). doi: 10.25789/YMJ.2023.82.12. EDN: CMPYWA.
Review
For citations:
Yanus G.A., Iyevleva A.G., Malygin A.Yu., Suspitsin E.N., Aleksakhina S.N., Imyanitov E.N. Monogenic predisposition to colorectal cancer: features of carcinogenesis and translational aspects. Siberian journal of oncology. 2025;24(5):113-127. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-5-113-127








































