Prospects for epigenetic research in neurofibromatosis type 1
https://doi.org/10.21294/1814-4861-2025-24-5-128-139
Abstract
Background. Neurofibromatosis type 1 (NF1) is a monogenic disease with a wide range of clinical manifestations. NF1 is associated with increased risk of malignant peripheral nerve sheath tumors (MPNST), leukemia, gastrointestinal and breast cancer, rhabdomyosarcoma, carcinoid tumors, and pheochromocytoma. NF1 gene mutations serve as drivers of various sporadic malignancies. the purpose of the study was to evaluate the mechanisms by which epigenetic factors influence the development of NF1 and the potential for their use in diagnosis and treatment.
Material and Methods. The search for relevant sources was carried out in Scopus, Web of Science, PubMed, Elibrary, including publications from February 1995 to February 2025. Of the 1432 scientific articles found, 56 were used to write the review.
Results. An analysis of scientific literature showed that NF1 mRNA is a target of 13 microRNAs that are also involved in carcinogenesis of sporadic nervous system tumors (miR-9, miR-10b, miR-16, miR-21, miR-27a, miR-27b-3p, miR-34a, miR125a-3p, miR-128-3p, miR-137-3p, miR-147a, miR-193b, miR-204-5p). There is evidence of an evolutionary and functional relationship between NF1 gene and retroelements: the formation of 12 NF1 pseudogenes on 7 different chromosomes with the help of retroelement enzymes, NF1 introns contain Alu and LINE, which are sources of alternative splicing and recombination, and the presence of insertional mutagenesis hot spots in NF1.
Conclusion. Genetic studies have not confirmed the role of modifier genes as triggers for the development and progression of tumor syndrome in NF1. However, changes in the expression of specific microRNAs have been identified in the development of cutaneous, subcutaneous, and plexiform neurofibromas, MPNST. This suggests the potential of studying of epigenetic factors in NF1 pathogenesis for targeted therapy. Further studies of the relationship between the NF1 gene and retroelements will identify new treatment options for NF1 and sporadic tumors by addressing the “vicious cycle” described in the relationship between other tumor suppressor genes and retroelements.
Keywords
About the Author
R. N. MustafinRussian Federation
3, Lenin St., Ufa, 450008
References
1. Lim Z., Gu T.Y., Tai B.C., Puhaindran M.E. Survival outcomes of malignant peripheral nerve sheath tumors (MPNSTs) with and without neurofibromatosis type I (NF1): a meta-analysis. World J Surg Oncol. 2024; 22(1): 14. doi: 10.1186/s12957-023-03296-z.
2. Saharafi P., Akar İ., Ersoy-Evans S., Anlar B., Varan A., Vargel I., Cetin M., Ayter S. Assessment of Ecotropic Viral Integration Site 2B (EVI2B) Gene in Juvenile Myelomonocytic Leukemia and Neurofibromatosis Type 1 NF1 Tumors. Biochem Genet. 2024; 62(2): 1263–76. doi: 10.1007/s10528-023-10480-z.
3. Patil S., Chamberlain R.S. Neoplasms associated with germline and somatic NF1 gene mutations. Oncologist. 2012; 17(1): 101–16. doi: 10.1634/theoncologist.2010-0181.
4. Mustafin R.N. The role of mutations in NF1 gene in sporadic carcinogenesis. Advances in Molecular Oncology. 2021; 8(3): 25–33. (in Russian). doi: 10.17650/2313-805X-2021-8-3-25-33. EDN: EXRQZK.
5. Luijten M., Fahsold R., Mischung C., Westerveld A., Nurnberg P., Hulsebos T.J. Limited contribution of interchromosomal gene conversion to NF1 gene mutation. J. Med. Genet. 2001; 38(7): 481–85. doi: 10.1136/jmg.38.7.481.
6. Mo J., Moye S.L., McKay R.M., Le L.Q. Neurofibromin and suppression of tumorigenesis: beyond the GAP. Oncogene. 2022; 41(9): 1235–51. doi: 10.1038/s41388-021-02156-y.
7. Mustafin R.N. Prospects for diagnostics and treatment of neurofibromatosis type 1 in Russia. Siberian Journal of Oncology. 2023; 22(3): 119–24. (in Russian). doi: 10.21294/1814-48612023-22-3-119-124. EDN: WTIXDC.
8. Mustafin R.N. Atypical clinical manifestations and genotype-phenotype correlations of neurofibromatosis type 1. Siberian Journal of Oncology. 2022; 21(4): 98–109. (in Russian). doi: 10.21294/1814-4861-2022-21-4-98-109. EDN: EMRWCL.
9. Maehara T., Yamazaki A., Kawabata-Iwakawa R., Fukuoka K., Akazawa A., Okura N., Nishiyama M., Nassiri F., Wang J.Z., Zadeh G., Kikuta K., Oka H., Hirato J., Yokoo H., Nobusawa S. Hyperplasia of Arachnoid Trabecular Cells: A Hitherto Undescribed Lesion Observed in the Setting of Neurofibromatosis Type 1. Am J Surg Pathol. 2023; 47(7): 819–25. doi: 10.1097/PAS.0000000000002056.
10. Grit J.L., Johnson B.K., Dischinger P.S., J Essenburg C., Adams M., Campbell S., Pollard K., Pratilas C.A., Triche T.J. Jr., Graveel C.R., Steensma M.R. Distinctive epigenomic alterations in NF1-deficient cutaneous and plexiform neurofibromas drive differential MKK/p38 signaling. Epigenetics Chromatin. 2021; 14(1): 7. doi: 10.1186/s13072-020-00380-6.
11. Lucas C.G., Sloan E.A., Gupta R., Wu J., Pratt D., Vasudevan H.N., Ravindranathan A., Barreto J., Williams E.A., Shai A., Whipple N.S., Bruggers C.S., Maher O., Nabors B., Rodriguez M., Samuel D., Brown M., Carmichael J., Lu R., Mirchia K., Sullivan D.V., Pekmezci M., Tihan T., Bollen A.W., Perry A., Banerjee A., Mueller S., Gupta N., Hervey-Jumper S.L., Oberheim Bush N.A., Daras M., Taylor J.W., Butowski N.A., de Groot J., Clarke J.L., Raleigh D.R., Costello J.F., Phillips J.J., Reddy A.T., Chang S.M., Berger M.S., Solomon D.A. Multiplatform molecular analyses refine classification of gliomas arising in patients with neurofibromatosis type 1. Acta Neuropathol. 2022; 144(4): 747–65. doi: 10.1007/s00401-022-02478-5.
12. Cimino P.J., Ketchum C., Turakulov R., Singh O., Abdullaev Z., Giannini C., Pytel P., Lopez G.Y., Colman H., Nasrallah M.P., Santi M., Fernandes I.L., Nirschl J., Dahiya S., Neill S., Solomon D., Perez E., Capper D., Mani H., Caccamo D., Ball M., Badruddoja M., Chkheidze R., Camelo-Piragua S., Fullmer J., Alexandrescu S., Yeaney G., Eberhart C., Martinez-Lage M., Chen J., Zach L., Kleinschmidt-DeMasters B.K., Hefti M., Lopes M.B., Nuechterlein N., Horbinski C., Rodriguez F.J., Quezado M., Pratt D., Aldape K. Expanded analysis of high-grade astrocytoma with piloid features identifies an epigenetically and clinically distinct subtype associated with neurofibromatosis type 1. Acta Neuropathol. 2023; 145(1): 71–82. doi: 10.1007/s00401-022-02513-5.
13. Gortes-Ciriano I., Steele C.D., Piculell K., Al-Ibraheemi A., Eulo V., Bui M.M., Chatzipli A., Dickson B.C., Borcherding D.C., Feber A., Galor A., Hart J., Jones K.B., Jordan J.T., Kim R.H., Lindsay D., Miller C., Nishida Y., Proszek P.Z., Serrano J., Sundby R.T., Szymanski J.J., Ullrich N.J., Viskochil D., Wang X., Snuderl M., Park P.J., Flanagan A.M., Hirbe A.C., Pillay N., Miller D.T.; Genomics of MPNST (GeM) Consortium. Genomic Patterns of Malignant Peripheral Nerve Sheath Tumor (MPNST) Evolution Correlate with Clinical Outcome and Are Detectable in Cell-Free DNA. Cancer Discov. 2023; 13(3): 654–71. doi: 10.1158/2159-8290.CD-22-0786.
14. Tomczak K., Patel M.S., Bhalla A.D., Peterson C.B., Landers S.M., Callahan S.C., Zhang D., Wong J., Landry J.P., Lazar A.J., Livingston J.A., Guadagnolo B.A., Lyu H.G., Lillemoe H., Roland C.L., Keung E.Z., Scally C.P., Hunt K.K., McCutcheon I.E., Slopis J.M., Gu J., Scheet P., Wang L., Rai K., Torres K.E. Plasma DNA Methylation-Based Biomarkers for MPNST Detection in Patients With Neurofibromatosis Type 1. Mol Carcinog. 2025; 64(1): 44–56. doi: 10.1002/mc.23825.
15. Kresbach C., Dottermusch M., Eckhardt A., Ristow I., Paplomatas P., Altendorf L., Wefers A.K., Bockmayr M., Belakhoua S., Tran I., Pohl L., Neyazi S., Bode H., Farschtschi S., Well L., Friedrich R.E., Reuss D., Snuderl M., Hagel C., Mautner V.F., Schüller U. Atypical neurofibromas reveal distinct epigenetic features with proximity to benign peripheral nerve sheath tumor entities. Neuro Oncol. 2023; 25(9): 1644–55. doi: 10.1093/neuonc/noad053.
16. Mustafin R.N. Clincal characterisitcs of neurofibromatosis type 1 in the Republic of Bashkortostan. The Russian Archives of Internal Medicine 2025; 15(3): 199–205. (in Russian). doi: 10.20514/2226-6704-2025-15-3-199-205. EDN: HJYYBD.
17. Chalertpet K., Pin-On P., Aporntewan C., Patchsung M., Ingrungruanglert P., Israsena N., Mutirangura A. Argonaute 4 as an Effector Protein in RNA-Directed DNA Methylation in Human Cells. Front Genet. 2019; 10: 645. doi: 10.3389/fgene.2019.00645.
18. Takei T., Tsukada M., Tamura K., Hara-Nishimura I., Fukao Y., Kurihara Y., Matsui M., Saze H., Tsuzuki M., Watanabe Y., Hamada T. ARGONAUTE1-binding Tudor domain proteins function in small interfering RNA production for RNA-directed DNA methylation. Plant Physiol. 2024; 195(2): 1333–46. doi: 10.1093/plphys/kiae135.
19. Tritto V., Bettinaglio P., Mangano E., Cesaretti C., Marasca F., Castronovo C., Bordoni R., Battaglia C., Saletti V., Ranzani V., Bodega B., Eoli M., Natacci F., Riva P. Genetic/epigenetic effects in NF1 microdeletion syndrome: beyond the haploinsufficiency, looking at the contribution of not deleted genes. Hum Genet. 2024; 143(6): 775–95. doi: 10.1007/s00439-024-02683-0.
20. Wang M., Wang Z., Zhu X., Guan S., Liu Z. NFKB1-miR-612FAIM2 pathway regulates tumorigenesis in neurofibromatosis type 1. In Vitro Cell Dev Biol Anim. 2019; 55(7): 491–500. doi: 10.1007/s11626019-00370-3.
21. Masliah-Planchon J., Pasmant E., Luscan A., Laurendeau I., Ortonne N., Hivelin M., Varin J., Valeyrie-Allanore L., Dumaine V., Lantieri L., Leroy K., Parfait B., Wolkenstein P., Vidaud M., Vidaud D., Bièche I. MicroRNAome profiling in benign and malignant neurofibromatosis type 1-associated nerve sheath tumors: evidences of PTEN pathway alterations in early NF1 tumorigenesis. BMC Genomics. 2013; 14: 473. doi: 10.1186/1471-2164-14-473.
22. Amirnasr A., Verdijk R.M., van Kuijk P.F., Kartal P., Vriends A.L.M., French P.J., van Royen M.E., Taal W., Sleijfer S., Wiemer E.A.C. Deregulated microRNAs in neurofibromatosis type 1 derived malignant peripheral nerve sheath tumors. Sci Rep. 2020; 10(1): 2927. doi: 10.1038/s41598020-59789-4.
23. Khosravi T., Oladnabi M. The role of miRNAs and lncRNAs in neurofibromatosis type 1. J Cell Biochem. 2023; 124(1): 17–30. doi: 10.1002/jcb.30349.
24. Na Y., Hall A., Choi K., Hu L., Rose J., Coover R.A., Miller A., Hennigan R.F., Dombi E., Kim M.O., Subramanian S., Ratner N., Wu J. MicroRNA-155 contributes to plexiform neurofibroma growth downstream of MEK. Oncogene. 2021; 40(5): 951–63. doi: 10.1038/s41388-02001581-9.
25. Lee M.J., Tsai Y.J., Lin M.Y., You H.L., Kalyanam N., Ho C.T., Pan M.H. Calebin-A induced death of malignant peripheral nerve sheath tumor cells by activation of histone acetyltransferase. Phytomedicine. 2019; 57: 377–84. doi: 10.1016/j.phymed.2019.01.001.
26. Zhu H., Yang J., Yang S. MicroRNA-103a-3p potentiates chemoresistance to cisplatin in non-small cell lung carcinoma by targeting neurofibromatosis 1. Exp Ther Med. 2020; 19(3): 1797–805. doi: 10.3892/etm.2020.8418.
27. Wang S., Ma G., Zhu H., Lv C., Chu H., Tong N., Wu D., Qiang F., Gong W., Zhao Q., Tao G., Zhou J., Zhang Z., Wang M. miR-107 regulates tumor progression by targeting NF1 in gastric cancer. Sci Rep. 2016; 6: 36531. doi: 10.1038/srep36531.
28. Tan X., Wang S., Yang B., Zhu L., Yin B., Chao T., Zhao J., Yuan J., Qiang B., Peng X. The CREB-miR-9 negative feedback minicircuitry coordinates the migration and proliferation of glioma cells. PLoS One. 2012; 7(11): e49570. doi: 10.1371/journal.pone.0049570.
29. Wang Z., Ma K., Pitts S., Cheng Y., Liu X., Ke X., Kovaka S., Ashktorab H., Smoot D.T., Schatz M., Wang Z., Meltzer S.J. Novel circular RNA circNF1 acts as a molecular sponge, promoting gastric cancer by absorbing miR-16. Endocr Relat Cancer. 2019; 26(3): 265–77. doi 10.1530/ERC-18-0478.
30. Li S., Li W., Chen G., Huang J., Li W. MiRNA-27a-3p induces temozolomide resistance in glioma by inhibiting NF1 level. Am J Transl Res. 2020; 12(8): 4749–56.
31. Lu H., Liu P., Pang Q. MiR-27a-3p/miR-27b-3p Promotes Neurofibromatosis Type 1 via Targeting of NF1. J Mol Neurosci. 2021; 71(11): 2353–363. doi: 10.1007/s12031-020-01779-2.
32. Tatura R., Buchholz M., Dickson D.W., van Swieten J., McLean C., Höglinger G., Müller U. microRNA profiling: increased expression of miR-147a and miR-518e in progressive supranuclear palsy (PSP). Neurogenetics. 2016; 17(3): 165–71. doi: 10.1007/s10048-016-0480-6.
33. Chai G., Liu N., Ma J., Li H., Oblinger J.L., Prahalad A.K., Gong M., Chang L.S., Wallace M., Muir D., Guha A., Phipps R.J., Hock J.M., Yu X. MicroRNA-10b regulates tumorigenesis in neurofibromatosis type 1. Cancer Sci. 2010; 101(9): 1997–2004. doi: 10.1111/j.1349-7006 .2010.01616.x.
34. Sedani A., Cooper D.N., Upadhyaya M. An emerging role for microRNAs in NF1 tumorigenesis. Hum Genomics. 2012; 6(1): 23. doi: 10.1186/1479-7364-6-23.
35. Paschou M., Doxakis E. Neurofibromin 1 Is a miRNA Target in Neurons. PLOS ONE. 2012; 7(10): e46773. doi: 10.1371/journal. pone.0046773.
36. Yap Y.S., McPherson J.R., Ong C.K., Rozen S.G., Teh B.T., Lee A.S., Callen D.F. The NF1 gene revisited – from bench to bedside. Oncotarget. 2014; 5(15): 5873–92. doi: 10.18632/oncotarget.2194.
37. Sun X.X., Zhang S.S., Dai C.Y., Peng J., Pan Q., Xu L.F., Ma X.L. LukS-PV-Regulated MicroRNA-125a-3p Promotes THP-1 Macrophages Differentiation and Apoptosis by Down-Regulating NF1 and Bcl-2. Cell Physiol Biochem. 2017; 44(3): 1093–1105. doi: 10.1159/000485415.
38. Krell A., Wolter M., Stojcheva N., Hertler C., Liesenberg F., Zapatka M., Weller M., Malzkorn B., Reifenberger G. MiR-16-5p is frequently down-regulated in astrocytic gliomas and modulates glioma cell proliferation, apoptosis and response to cytotoxic therapy. Neuropathol Appl Neurobiol. 2019; 45(5): 441–58. doi: 10.1111/nan.12532.
39. Gao P., Wang H., Li H., Shu L., Han Z., Li S., Cheng H., Dai X. miR-21-5p Inhibits the Proliferation, Migration, and Invasion of Glioma by Targeting S100A10. J Cancer. 2023; 14(10): 1781–93. doi: 10.7150/ jca.84030.
40. Miao W., Li N., Gu B., Yi G., Su Z., Cheng H. MiR-27b-3p suppresses glioma development via targeting YAP1. Biochem Cell Biol. 2020; 98(4): 466–73. doi: 10.1139/bcb-2019-0300.
41. Mustafov D., Siddiqui S.S., Klena L., Karteris E., Braoudaki M. SV2B/miR-34a/miR-128 axis as prognostic biomarker in glioblastoma multiforme. Sci Rep. 2024; 14(1): 6647. doi: 10.1038/s41598-024-55917-6.
42. He J., Huang Z., He M., Liao J., Zhang Q., Wang S., Xie L., Ouyang L., Koeffler H.P., Yin D., Liu A. Circular RNA MAPK4 (circMAPK4) inhibits cell apoptosis via MAPK signaling pathway by sponging miR-125a-3p in gliomas. Mol Cancer. 2020; 19(1): 17. doi: 10.1186/s12943-019-1120-1.
43. Li D., Hu J., Li S., Zhou C., Feng M., Li L., Gao Y., Chen X., Wu X., Cao Y., Hao B., Chen L. LINC01393, a Novel Long Non-Coding RNA, Promotes the Cell Proliferation, Migration and Invasion through MiR-128-3p/NUSAP1 Axis in Glioblastoma. Int J Mol Sci. 2023; 24(6): 5878. doi: 10.3390/ijms24065878.
44. Lei C., Jing G., Jichao W., Xiaohui L., Fang Q., Hua G., Yazhou M., Zhang Y. MiR-137’s Tumor Suppression on Prolactinomas by Targeting MITF and Modulating Wnt Signaling Pathway. J Clin Endocrinol Metab. 2019; 104(12): 6391–402. doi: 10.1210/jc.2018-02544.
45. Xu P., Ge F.H., Li W.X., Xu Z., Wang X.L., Shen J.L., Xu A.B., Hao R.R. MicroRNA-147a Targets SLC40A1 to Induce Ferroptosis in Human Glioblastoma. Anal Cell Pathol (Amst). 2022; 2843990. doi: 10.1155/2022/2843990.
46. Zhu M., Zhao W., Zhao H., Zhang J. Diagnostic and prognostic value of microRNA-193b in patients with glioma and its effect on tumor progression. Oncol Lett. 2019; 18(5): 4882–90. doi: 10.3892/ol.2019.10819.
47. Shen J., Xiong J., Shao X., Cheng H., Fang X., Sun Y., Di G., Mao J., Jiang X. Knockdown of the long noncoding RNA XIST suppresses glioma progression by upregulating miR-204-5p. J Cancer. 2020; 11(15): 4550–59. doi: 10.7150/jca.45676.
48. Nix J.S., Yuan M., Imada E.L., Ames H., Marchionni L., Gutmann D.H., Rodriguez F.J. Global microRNA profiling identified miR-10b5p as a regulator of neurofibromatosis 1 (NF1)-glioma migration. Neuropathol Appl Neurobiol. 2021; 47(1): 96–107. doi: 10.1111/nan.12641.
49. Mustafin R.N. Influence of retroelements on oncogenes and tumor suppressors in carcinogenesis. Journal of Modern Oncology. 2021; 23(4): 666–73. (in Russian). doi: 10.26442/18151434.2021.4.201199. EDN: SXXLXG.
50. Alesi V., Genovese S., Lepri F.R., Catino G., Loddo S., Orlando V., di Tommaso S., Morgia A., Martucci L., Di Donato M., Digilio M.C., Dallapiccola B., Novelli A., Capolino R. Deep Intronic LINE-1 Insertions in NF1: Expanding the Spectrum of Neurofibromatosis Type 1-Associated Rearrangements. Biomolecules. 2023; 13(5): 725. doi: 10.3390/biom13050725.
51. Hoyt S.J., Storer J.M., Hartley G.A., Grady P.G.S., Gershman A., de Lima L.G., Limouse C., Halabian R., Wojenski L., Rodriguez M., Altemose N., Rhie A., Core L.J., Gerton J.L., Makalowski W., Olson D., Rosen J., Smit A.F.A., Straight A.F., Vollger M.R., Wheeler T.J., Schatz M.C., Eichler E.E., Phillippy A.M., Timp W., Miga K.H., O’Neill R.J. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science. 2022; 376(6588): eabk3112. doi: 10.1126/science.abk3112.
52. Tavares E., Tang C.Y., Vig A., Li S., Billingsley G., Sung W., Vincent A., Thiruvahindrapuram B., Héon E. Retrotransposon insertion as a novel mutational event in Bardet-Biedl syndrome. Mol Genet Genomic Med. 2019; 7(2): e00521. doi: 10.1002/mgg3.521.
53. Perez-Becerril C., Evans D.G., Smith M.J. Pathogenic noncoding variants in the neurofibromatosis and schwannomatosis predisposition genes. Hum Mutat. 2021; 42(10): 1187–207. doi 10.1002/humu.24261.
54. Payer L.M., Steranka J.P., Ardeljan D., Walker J., Fitzgerald K.C., Calabresi P.A., Cooper T.A., Burns K.H. Alu insertion variants alter mRNA splicing. Nucleic Acids Res. 2019; 47(1): 421–31. doi: 10.1093/nar/gky1086.
55. Mustafin R.N. Participation of retroelements in chromoanagenesis in cancer development. Siberian Journal of Oncology. 2024; 23(5): 146–56. (in Russian). doi: 10.21294/1814-4861-2024-23-5-146-156. EDN: SZYGML.
56. Park E.G., Ha H., Lee D.H., Kim W.R., Lee Y.J., Bae W.H., Kim H.S. Genomic Analyses of Non-Coding RNAs Overlapping Transposable Elements and Its Implication to Human Diseases. Int J Mol Sci. 2022; 23(16): 8950. doi: 10.3390/ijms23168950.
Review
For citations:
Mustafin R.N. Prospects for epigenetic research in neurofibromatosis type 1. Siberian journal of oncology. 2025;24(5):128-139. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-5-128-139








































