Preview

Siberian journal of oncology

Advanced search

Expression of excision repair genes in breast tumors during neoadjuvant chemotherapy

https://doi.org/10.21294/1814-4861-2025-24-6-48-58

Abstract

The main anticancer drugs (particularly anthracyclines and taxanes) widely used in neoadjuvant breast cancer therapy can cause DNA damage in tumor cells. Activation of excision repair systems in these cells can reduce treatment effectiveness, promoting damage repair and the development of resistance. Therefore, studying the expression level of excision repair genes is a promising approach for identifying potential predictive markers of treatment efficacy and potential prognostic markers of hematogenous metastasis. this study assessed changes in the expression level of excision repair genes in luminal B HER2-subtype breast tumors during treatment with standard neoadjuvant chemotherapy regimens.

Material and Methods. Paired biopsy samples (pre-treatment and post-NAC tumor tissue) from each patient were used. The tumor expression landscape was assessed using full-transcriptome microarray analysis with Clariom™ S Assay, human microarrays (Affymetrix, USA).

Results. A study assessing the excision repair gene expression in breast tumors before therapy with anthracycline-containing regimens found that the expression levels of 3 genes (DDB1, FAN1, GTF2H3) changed significantly depending on how the patients responded to neoadjuvant chemotherapy. Before treatment with taxane-containing regimens, 5 genes CDK2AP2, MMS19, DDB1, CCNL2, TDG showed significant changes. The assessment of the excision repair gene expression in breast tumors after therapy with anthracycline-containing regimens found that the expression levels of 5 genes (RFC1, RAD23B, CCNH, POLB, RPA4) changed significantly depending on hematogenous metastasis status. After therapy with taxane-containing regimens, 7 genes (PARP1, NTHL1, ERCC8, XAB2, DUT, CCNL2, MNAT1) showed significant changes. Analysis of metastasis-free survival of patients revealed statistically significant changes in the expression levels of NTHL1, XAB2 and DUT genes in the tumor after taxane-containing treatment.

Conclusion. Potential gene expression markers for predicting hematogenous metastasis of HER2-negative breast tumors treated with taxane-containing NAC regimens were identified.

About the Authors

A. K. Shagabudinova
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Arina K. Shagabudinova - Research Assistant, Laboratory of Oncovirology, Cancer Research Institute.

5, Kooperativny St., Tomsk, 634009



M. K. Ibragimova
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Marina K. Ibragimova - PhD, Senior Researcher, Laboratory of Oncovirology,. Researcher ID (WOS): C-8609-2012. Author ID (Scopus): 57130579200.

5, Kooperativny St., Tomsk, 634009



M. M. Tsyganov
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Matvey M. Tsyganov - PhD, Senior Researcher, Laboratory of Oncovirology,. Researcher ID (WOS): A-7212-2014. Author ID (Scopus): 55366377400.

5, Kooperativny St., Tomsk, 634009



E. Yu. Garbukov
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Evgenii Yu. Garbukov - MD, PhD, Senior Researcher, Department of General Oncology, Researcher ID (WOS): C-8299-2012. Author ID (Scopus): 6504255124.

5, Kooperativny St., Tomsk, 634009



N. V. Litviakov
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation

Nikolay V. Litviakov - DSc, Professor of the Russian Academy of Sciences, Head of the Laboratory of Oncovirology, Researcher ID (WOS): C-3263-2012. Author ID (Scopus): 6506850698.

5, Kooperativny St., Tomsk, 634009



References

1. Tyulyandin S.A., Artamonova E.V., Zhigulev A.N., Zhukova L.G., Koroleva I.A., Parokonnaya A.A., Semiglazova T.Yu., Stenina M.B., Frolova M.A. Breast cancer. Malignant Tumoursis. 2024; 14(3S2-1(2): 32–81. (in Russian). doi 10.18027/2224-5057-2024-14-3s2-1.2-01. EDN: KELJSW.

2. Jia X., Wang K., Zhuo Q., Zhao Z., Li M. PARP Inhibitor for Neoadjuvant Therapy in HER2-Negative Breast Cancer: A Systematic Review and Meta-Analysis of Efficacy and Safety. Clin Breast Cancer. 2024; 24(5): 392–98. doi: 10.1016/j.clbc.2024.02.020.

3. Spring L.M., Fell G., Arfe A., Sharma C., Greenup R., Reynolds K.L., Smith B.L., Alexander B., Moy B., Isakoff S.J., Parmigiani G., Trippa L., Bardia A. Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis. Clin Cancer Res. 2020; 26(12): 2838–48. doi: 10.1158/1078-0432.CCR-19-3492.

4. Wang R., Sun Y., Li C., Xue Y., Ba X. Targeting the DNA Damage Response for Cancer Therapy. Int J Mol Sci. 2023; 24(21): 15907. doi: 10.3390/ijms242115907.

5. Moon J., Kitty I., Renata K., Qin S., Zhao F., Kim W. DNA Damage and Its Role in Cancer Therapeutics. Int J Mol Sci. 2023; 24(5): 4741. doi: 10.3390/ijms24054741.

6. Rajkumar-Calkins A.S., Szalat R., Dreze M., Khan I., Frazier Z., Reznichenkov E., Schnorenberg M.R., Tsai Y.F., Nguyen H., Kochupurakkal B., D’Andrea A.D., Shapiro G.I., Lazaro J.B., Mouw K.W. Functional profiling of nucleotide Excision repair in breast cancer. DNA Repair (Amst). 2019; 82: 102697. doi: 10.1016/j.dnarep.2019.102697.

7. Huppert L.A., Gumusay O., Idossa D., Rugo H.S. Systemic therapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative early stage and metastatic breast cancer. CA Cancer J Clin. 2023; 73(5): 480–515. doi: 10.3322/caac.21777.

8. Wu Y., Huang S., Wei Y., Huang M., Li C., Liang W., Qin T. Efficacy and safety of different regimens of neoadjuvant therapy in patients with hormone receptor-positive, her2-negative breast cancer: a network meta-analysis. Front Immunol. 2024; 15: 1420214. doi: 10.3389/fimmu.2024.1420214.

9. Tarapara B., Shah F. Role of MRE11 in DNA damage repair pathway dynamics and its diagnostic and prognostic significance in hereditary breast and ovarian cancer. BMC Cancer. 2025; 25(1): 650. doi: 10.1186/s12885-025-14082-3.

10. Hermawan A., Putri H. Characterizing excision repair crosscomplementing family genes as drug resistance biomarkers in breast cancer. Beni-Suef Univ J Basic Appl Sci. 2023; 12: 79. doi.org/10.1186/s43088-023-00415-3.

11. Allison K.H., Hammond M.E.H., Dowsett M., McKernin S.E., Carey L.A., Fitzgibbons P.L., Hayes D.F., Lakhani S.R., Chavez-MacGregor M., Perlmutter J., Perou C.M., Regan M.M., Rimm D.L., Symmans W.F., Torlakovic E.E., Varella L., Viale G., Weisberg T.F., McShane L.M., Wolff A.C. Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J Clin Oncol. 2020; 38(12): 1346–66. doi: 10.1200/JCO.19.02309.

12. Wolff A.C., Hammond M.E.H., Allison K.H., Harvey B.E., Mangu P.B., Bartlett J.M.S., Bilous M., Ellis I.O., Fitzgibbons P., Hanna W., Jenkins R.B., Press M.F., Spears P.A., Vance G.H., Viale G., McShane L.M., Dowsett M. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. J Clin Oncol. 2018; 36(20): 2105–22. doi: 10.1200/JCO.2018.77.8738.

13. Anurag M., Punturi N., Hoog J., Bainbridge M.N., Ellis M.J., Haricharan S. Comprehensive Profiling of DNA Repair Defects in Breast Cancer Identifies a Novel Class of Endocrine Therapy Resistance Drivers. Clin Cancer Res. 2018; 24(19): 4887–99. doi: 10.1158/1078-0432.CCR-17-3702.

14. Sarker A.H., Cooper P.K., Hazra T.K. DNA glycosylase NEIL2 functions in multiple cellular processes. Prog Biophys Mol Biol. 2021; 164: 72–80. doi: 10.1016/j.pbiomolbio.2021.03.003.

15. Hua A.B., Sweasy J.B. Functional roles and cancer variants of the bifunctional glycosylase NEIL2. Environmental and Molecular Mutagenesis. 2024; 40–56. doi: 10.1002/em.22555.

16. Tang L., Zhu C., Jin J., Wang X., Yu L., Guan X. Expression of CDK7 correlates with molecular subtypes and predicts clinical outcomes in breast cancer. Transl Cancer Res. 2021; 10(2): 669–80. doi: 10.21037/tcr-20-2911.

17. Li Z.M., Liu G., Gao Y., Zhao M.G. Targeting CDK7 in oncology: The avenue forward. Pharmacol Ther. 2022; 240: 108229. doi: 10.1016/j.pharmthera.2022.108229.

18. Gong Y., Li H. CDK7 in breast cancer: mechanisms of action and therapeutic potential. Cell Commun Signal. 2024; 22(1): 226. doi: 10.1186/s12964-024-01577-y.

19. Hur J.Y., Kim H.R., Lee J.Y., Park S., Hwang J.A., Kim W.S., Yoon S., Choi C.M., Rho J.K., Lee J.C. CDK7 inhibition as a promising therapeutic strategy for lung squamous cell carcinomas with a SOX2 amplification. Cell Oncol (Dordr). 2019; 42(4): 449–58. doi: 10.1007/s13402-019-00434-2.

20. Wang C., Jin H., Gao D., Wang L., Evers B., Xue Z., Jin G., Lieftink C., Beijersbergen R.L., Qin W., Bernards R. A CRISPR screen identifies CDK7 as a therapeutic target in hepatocellular carcinoma. Cell Res. 2018; 28(6): 690–92. doi: 10.1038/s41422-018-0020-z.

21. Cao X., Dang L., Zheng X., Lu Y., Lu Y., Ji R., Zhang T., Ruan X., Zhi J., Hou X., Yi X., Li M.J., Gu T., Gao M., Zhang L., Chen Y. Targeting Super-Enhancer-Driven Oncogenic Transcription by CDK7 Inhibition in Anaplastic Thyroid Carcinoma. Thyroid. 2019; 29(6): 809–23. doi: 10.1089/thy.2018.0550.

22. Kolloch L., Kreinest T., Meisterernst M., Oeckinghaus A. Control of Expression of Key Cell Cycle Enzymes Drives Cell Line-Specific Functions of CDK7 in Human PDAC Cells. Int J Mol Sci. 2022; 23(2): 812. doi: 10.3390/ijms23020812.

23. Huang C.S., Xu Q.C., Dai C., Wang L., Tien Y.C., Li F., Su Q., Huang X.T., Wu J., Zhao W., Yin X.Y. Nanomaterial-Facilitated CyclinDependent Kinase 7 Inhibition Suppresses Gallbladder Cancer Progression via Targeting Transcriptional Addiction. ACS Nano. 2021; 15(9): 14744–55. doi: 10.1021/acsnano.1c04570.

24. Zhou Y., Lu L., Jiang G., Chen Z., Li J., An P., Chen L., Du J., Wang H. Targeting CDK7 increases the stability of Snail to promote the dissemination of colorectal cancer. Cell Death Differ. 2019; 26(8): 1442–52. doi: 10.1038/s41418-018-0222-4.

25. Zhang T., Li J., Yang M., Ma X., Wang Z., Ma X., Sun M., Sun W., Xu J., Hua Y., Cai Z. CDK7/GRP78 signaling axis contributes to tumor growth and metastasis in osteosarcoma. Oncogene. 2022; 41(40): 4524–36. doi: 10.1038/s41388-022-02446-z.

26. Yousefi H., Bahramy A., Zafari N., Delavar M.R., Nguyen K., Haghi A., Kandelouei T., Vittori C., Jazireian P., Maleki S., Imani D., Moshksar A., Bitaraf A., Babashah S. Notch signaling pathway: a comprehensive prognostic and gene expression profile analysis in breast cancer. BMC Cancer. 2022; 22(1): 1282. doi: 10.1186/s12885-022-10383-z.

27. Huang C.S., Xu Q.C., Dai C., Wang L., Tien Y.C., Li F., Su Q., Huang X.T., Wu J., Zhao W., Yin X.Y. Nanomaterial-Facilitated CyclinDependent Kinase 7 Inhibition Suppresses Gallbladder Cancer Progression via Targeting Transcriptional Addiction. ACS Nano. 2021; 15(9): 14744–55. doi: 10.1021/acsnano.1c04570.


Review

For citations:


Shagabudinova A.K., Ibragimova M.K., Tsyganov M.M., Garbukov E.Yu., Litviakov N.V. Expression of excision repair genes in breast tumors during neoadjuvant chemotherapy. Siberian journal of oncology. 2025;24(6):48-58. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-6-48-58

Views: 36

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)