Preview

Siberian journal of oncology

Advanced search

Oncolytic viruses as promising agents for treating glioblastoma

https://doi.org/10.21294/1814-4861-2025-24-6-138-148

Abstract

Background. Glioblastoma is a highly aggressive, difficult-to-treat brain cancer with a poor prognosis, high mortality, and a significant impact on quality of life. Despite decades of research, standard treatments can extend life, but do not cure the disease, making it a focus for new research in neuro-oncology, immunotherapy, targeted therapy, and personalized medicine. The disease affects people of working age (with peak incidence between 45 and 70 years of age), causing damage to families and society. High costs of treatment and palliative care exacerbate the problem. the purpose of the study was to summarize data on modern approaches to the treatment of glioblastoma and to analyze efficacy and side effects of oncolytic virus therapy.

Material and Methods. The literature review of studies published over the past 10 years was conducted using PubMed, eLIBRARY, Springer, Google Scholar, etc. databases.

Results. Modern glioma therapy uses a multidisciplinary approach combining surgery, chemotherapy, and radiation therapy. Oncolytic virotherapy for brain glioma is a promising field because it uses viruses to selectively target to cancer cells while also stimulating an immune response against the tumor. Current research confirms that oncolytic therapy is effective against a variety of tumors including those that are resistant to traditional treatments. Clinical studies show that virotherapy can be a safe treatment because viruses are often engineered to be selective for cancer cells like glioma, minimizing damage to healthy tissue, although questions remain about optimizing dosage and overcoming the immune response.

Conclusion. Oncolytic virotherapy is a highly promising approach for the treatment of glioblastoma. Oncolytic viruses are currently in various stages of research, and have promise in animal models, with the potential to lead to new personalized treatments for solid tumors. 

About the Authors

D. E. Vengler
E.N. Meshalkin National Medical Research Center, Ministry of Health of Russia; Novosibirsk National Research State University
Russian Federation

Denis S. Vengler - Laboratory Assistant, Research Department of Oncology and Radiotherapy, Institute of Oncology and Neurosurgery, E.N. Meshalkin NMRC, MHR; 6th-year student, Institute of Medicine and Medical Technologies, Novosibirsk NRSU.

15, Rechkunovskaya St., Novosibirsk, 630055; 2, Pirogova St., Novosibirsk, 630090



E. V. Kuligina
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Elena V. Kuligina - PhD, Senior Researcher, Biotechnology Laboratory, Researcher ID (WOS): G-5565-2013. Author ID (Scopus): 6701589980.

8, Lavrentiev Ave., Novosibirsk, 630090



N. S. Vasileva
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Natalia S. Vasileva - Researcher, Laboratory of Genome Editing.

8, Lavrentiev Ave., Novosibirsk, 630090



V. A. Richter
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Vladimir A. Richter - DSc, Head of the Biotechnology Laboratory. Researcher ID (WOS): G-9750-2013. Author ID (Scopus): 7004405816.

8, Lavrentiev Ave., Novosibirsk, 630090



A. L. Chernyshovа
E.N. Meshalkin National Medical Research Center, Ministry of Health of Russia; Novosibirsk National Research State University
Russian Federation

Alena L. Chernyshova - MD, DSc, Professor of the Russian Academy of Sciences, Director, Institute of Oncology and Neurosurgery, E.N. Meshalkin NMRC, MHR; Professor, Department of Oncology, Novosibirsk NRSU Researcher ID (WOS): C-8608-2012.

15, Rechkunovskaya St., Novosibirsk, 630055; 2, Pirogova St., Novosibirsk, 630090



S. N. Tamkovich
E.N. Meshalkin National Medical Research Center, Ministry of Health of Russia; Novosibirsk National Research State University; Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Svetlana N. Tamkovich - PhD, Associate Professor, Head of the Research Department of Oncology and Radiotherapy, Institute of Oncology and Neurosurgery, E.N. Meshalkin NMRC, MHR; Associate Professor, Department of Clinical Biochemistry, Institute of Medicine and Medical Technologies, Novosibirsk NRSU; Senior Researcher, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the RAS. Researcher ID (WOS): G-9790-2013. Author ID (Scopus): 7801643574.

15, Rechkunovskaya St., Novosibirsk, 630055; 2, Pirogova St., Novosibirsk, 630090; 8, Lavrentiev Ave., Novosibirsk, 630090



References

1. Weller M., van den Bent M., Preusser M., Le Rhun E., Tonn J.C., Minniti G., Bendszus M., Balana C., Chinot O., Dirven L., French P., Hegi M.E., Jakola A.S., Platten M., Roth P., Rudà R., Short S., Smits M., Taphoorn M.J.B., von Deimling A., Westphal M., Soffietti R., Reifenberger G., Wick W. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021; 18(3): 170–86. doi: 10.1038/s41571-020-00447-z.

2. Schaff L.R., Mellinghoff I.K. Glioblastoma and Other Primary Brain Malignancies in Adults: A Review. JAMA. 2023; 329(7): 574–87. doi: 10.1001/jama.2023.0023.

3. Kalyango K., Dyachenko A.A., Bogdanov D.V., Potekhina E.F., Merabishvili V.M., Valkov M.YU. Increment of the incidence of glioblastoma following decrease in the incidence of brain tumors in 2000–2020: a population-based registry study. N.N. Burdenko’s Journal of Neurosurgery. 2022; 86(5): 28–36. (in Russian). doi: 10.17116/neiro20228605128. EDN: GHQEXS.

4. Mousavi S.M., Shayanfar M., Rigi S., Mohammad-Shirazi M., Sharifi G., Esmaillzadeh A. Adherence to plant-based dietary patterns in relation to glioma: a case-control study. Sci Rep. 2021; 11(1): 21819. doi: 10.1038/s41598-021-01212-7.

5. Khanmohammadi S., Mobarakabadi M., Mohebi F. The Economic Burden of Malignant Brain Tumors. Adv Exp Med Biol. 2023; 1394: 209–21. doi: 10.1007/978-3-031-14732-6_13.

6. Kotecha R.R., Mehta M.P. Optimizing the radiotherapy treatment planning process for glioblastoma. Neurooncol Pract. 2022; 9(5): 351–53. doi: 10.1093/nop/npac051.

7. Shoaf M.L., Desjardins A. Oncolytic Viral Therapy for Malignant Glioma and Their Application in Clinical Practice. Neurotherapeutics. 2022; 19(6): 1818–31.

8. Liao Y., He Y., Yang Y., Li X., Huang F. Case report: narcolepsy type 2 due to temporal lobe glioma. Medicine (Baltimore). 2020; 99(28): e21002. doi: 10.1097/MD.0000000000021002.

9. Meredith D.M., Pisapia D.J. 2021 World Health Organization Classification of Brain Tumors. Continuum (Minneap Minn). 2023; 29(6): 1638–61. doi: 10.1212/CON.0000000000001355.

10. Ostrom Q.T., Cioffi G., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol. 2021; 23(12 Suppl 2): iii1-iii105. doi: 10.1093/neuonc/noab200.

11. Arita H., Matsushita Y., Machida R., Yamasaki K., Hata N., Ohno M., Yamaguchi S., Sasayama T., Tanaka S., Higuchi F., Iuchi T., Saito K., Kanamori M., Matsuda K.I., Miyake Y., Tamura K., Tamai S., Nakamura T., Uda T., Okita Y., Fukai J., Sakamoto D., Hattori Y., Pareira E.S., Hatae R., Ishi Y., Miyakita Y., Tanaka K., Takayanagi S., Otani R., Sakaida T., Kobayashi K., Saito R., Kurozumi K., Shofuda T., Nonaka M., Suzuki H., Shibuya M., Komori T., Sasaki H., Mizoguchi M., Kishima H., Nakada M., Sonoda Y., Tominaga T., Nagane M., Nishikawa R., Kanemura Y., Kuchiba A., Narita Y., Ichimura K. TERT promoter mutation confers favorable prognosis regardless of 1p/19q status in adult diffuse gliomas with IDH1/2 mutations. Acta Neuropathol Commun. 2020; 8(1): 201. doi: 10.1186/s40478-020-01078-2.

12. Ghiaseddin A.P., Shin D., Melnick K., Tran D.D. Tumor Treating Fields in the Management of Patients with Malignant Gliomas. Curr Treat Options Oncol. 2020; 21(9): 76. doi: 10.1007/s11864-020-00773-5.

13. Dhingra S., Koshy M., Korpics M. Limited survival benefit in patients diagnosed with glioblastoma post-2016: a SEER population based registry analysis. J Cancer Res Clin Oncol. 2025; 151(6): 179. doi: 10.1007/s00432-025-06171-4.

14. Ruff M.W., Uhm J. Anaplastic Glioma: Treatment Approaches in the Era of Molecular Diagnostics. Curr Treat Options Oncol. 2018; 19(12): 61. doi: 10.1007/s11864-018-0579-0.

15. Tabrizi S., Shih H.A. The path forward for radiation therapy in the management of low-grade gliomas. Neuro Oncol. 2020; 22(6): 748–49. doi: 10.1093/neuonc/noaa085.

16. von Gall C. The effects of light and the circadian system on rhythmic brain function. Int. J. Mol. Sci.2022; 23(5): 2778. doi: 10.3390/ijms23052778.

17. Gonzalez-Aponte M.F., Damato A.R., Trebucq L.L., Simon T., Cárdenas-García S.P., Cho K., Patti G.J., Golombek D.A., Chiesa J.J., Rubin J.B., Herzog E.D. Circadian regulation of MGMT expression and promoter methylation underlies daily rhythms in TMZ sensitivity in glioblastoma. J Neurooncol. 2024; 166(3): 419–30. doi: 10.1007/s11060-023-04535-9.

18. Logan R.W., Xue X., Ketchesin K.D., Hoffman G., Roussos P., Tseng G., McClung C.A., Seney M.L. Sex Differences in Molecular Rhythms in the Human Cortex. Biol Psychiatry. 2022; 91(1): 152–62. doi: 10.1016/j.biopsych.2021.03.005.

19. Louis D.N., Perry A., Wesseling P., Brat D.J., Cree I.A., FigarellaBranger D., Hawkins C., Ng H.K., Pfister S.M., Reifenberger G., Soffietti R., von Deimling A., Ellison D.W. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 2021; 23(8): 1231–51. doi: 10.1093/neuonc/noab106.

20. Poon M.T.C., Bruce M., Simpson J.E., Hannan C.J., Brennan P.M. Temozolomide sensitivity of malignant glioma cell lines – a systematic review assessing consistencies between in vitro studies. BMC Cancer. 2021; 21(1): 1240. doi: 10.1186/s12885-021-08972-5.

21. Tan A.C., Ashley D.M., López G.Y., Malinzak M., Friedman H.S., Khasraw M. Management of glioblastoma: State of the art and future directions. CA Cancer J Clin. 2020; 70(4): 299–312. doi: 10.3322/caac.21613.

22. Madan R., Goyal S. Temozolomide Induced Cutaneous Reaction. Neurol India. 2022; 70(1): 435–36. doi: 10.4103/0028-3886.338725.

23. Weller M., Le Rhun E., van den Bent M., Chang S.M., Cloughesy T.F., Goldbrunner R., Hong Y.K., Jalali R., Jenkinson M.D., Minniti G., Nagane M., Razis E., Roth P., Rudà R., Tabatabai G., Wen P.Y., Short S.C., Preusser MDiagnosis and management of complications from the treatment of primary central nervous system tumors in adults. Neuro Oncol. 2023; 25(7): 1200–24. doi: 10.1093/neuonc/noad038.

24. Weller M., Albert N.L., Galldiks N., Bink A., Preusser M., Sulman E.P., Treyer V., Wen P.Y., Tonn J.C., Le Rhun E. Targeted radionuclide therapy for gliomas: Emerging clinical trial landscape. Neuro Oncol. 2024; 26(s9): 208–14. doi: 10.1093/neuonc/noae125.

25. Song A., Bar-Ad V., Martinez N., Glass J., Andrews D.W., Judy K., Evans J.J., Farrell C.J., Werner-Wasik M., Chervoneva I., Ly M., Palmer J.D., Liu H., Shi W. Initial experience with scalp sparing radiation with concurrent temozolomide and tumor treatment fields (SPARE) for patients with newly diagnosed glioblastoma. J Neurooncol. 2020; 147(3): 653–61. doi: 10.1007/s11060-020-03466-z.

26. Chen R.J., Arora R.D., Menezes R.G. Vinca Alkaloid Toxicity. 2024. StatPearls. Treasure Island (FL): StatPearls Publishing; 2025. [Internet]. [cited 11.10.2025]. URL: https://www.ncbi.nlm.nih.gov/books/NBK557842/.

27. Martino E., Casamassima G., Castiglione S., Cellupica E., Pantalone S., Papagni F., Rui M., Siciliano A.M., Collina S. Vinca alkaloids and analogues as anti-cancer agents: Looking back, peering ahead. Bioorg Med Chem Lett. 2018; 28(17): 2816–26. doi: 10.1016/j.bmcl.2018.06.044.

28. Blonski M., Obara T., Brzenczek C., Pouget C., Dillier C., Meyer M., Lavigne L., Forthoffer N., Broussois A., Gauchotte G., Baron M.H., Rech F., Mézières S., Gaudeau Y., Verger A., Vogin G., Anxionnat R., Moureaux J.M., Taillandier L. Initial PCV Chemotherapy Followed by Radiotherapy Is Associated With a Prolonged Response But Late Neurotoxicity in 20 Diffuse Low-Grade Glioma Patients. Front Oncol. 2022; 12: 827897. doi: 10.3389/fonc.2022.827897.

29. Tao G., Huang J., Moorthy B., Wang C., Hu M., Gao S., Ghose R. Potential role of drug metabolizing enzymes in chemotherapy-induced gastrointestinal toxicity and hepatotoxicity. Expert Opin Drug Metab Toxicol. 2020; 16(11): 1109–24. doi: 10.1080/17425255.2020.1815705.

30. Ali K., Sial A.A., Baig M.T., Ansari S.H., Adil S.O., Shamsi T.S. Detection of the Incidence of Infections and Acute Biochemical Changes in Diffused Large B-Cell Lymphoma Patients Treated with Cyclophosphamide, Doxorubicin, Vincristine and Prednisone (CHOP) with and without Rituximab. Curr Drug Saf. 2018; 13(2): 102–106. doi: 10.2174/1574886313666180321114839.

31. Timmins H.C., Li T., Kiernan M.C., Horvath L.G., Goldstein D., Park S.B. Quantification of Small Fiber Neuropathy in Chemotherapy-Treated Patients. J Pain. 2020; 21(1-2): 44–58. doi: 10.1016/j.jpain.2019.06.011.

32. Friedman H.S., Prados M.D., Wen P.Y., Mikkelsen T., Schiff D., Abrey L.E., Yung W.K.A., Paleologos N., Nicholas M.K., Jensen R., Vredenburgh J., Huang J., Zheng M., Cloughesy T. Bevacizumab Alone and in Combination With Irinotecan in Recurrent Glioblastoma. J Clin Oncol. 2023; 41(32): 4945–52. doi: 10.1200/JCO.22.02772.

33. Nayak L., Molinaro A.M., Peters K., Clarke J.L., Jordan J.T., de Groot J., Nghiemphu L., Kaley T., Colman H., McCluskey C., Gaffey S., Smith T.R., Cote D.J., Severgnini M., Yearley J.H., Zhao Q., Blumenschein W.M., Duda D.G., Muzikansky A., Jain R.K., Wen P.Y., Reardon D.A. Randomized Phase II and Biomarker Study of Pembrolizumab plus Bevacizumab versus Pembrolizumab Alone for Patients with Recurrent Glioblastoma. Clin Cancer Res. 2021; 27(4): 1048–57. doi: 10.1158/10780432.CCR-20-2500.

34. Lee Y., Lee E., Roh T.H., Kim S.H. Bevacizumab Alone Versus Bevacizumab Plus Irinotecan in Patients With Recurrent Glioblastoma: A Nationwide Population-Based Study. J Korean Med Sci. 2024; 39(34): e244. doi: 10.3346/jkms.2024.39.e244.

35. van Solinge T.S., Nieland L., Chiocca E.A., Broekman M.L. Advances in local therapy for glioblastoma-taking the fight to the tumor. Nat Rev Neurol. 2022; 18(4): 221–36. doi: 10.1038/s41582-022-00621-0.

36. Iuchi T., Inoue A., Hirose Y., Morioka M., Horiguchi K., Natsume A., Arakawa Y., Iwasaki K., Fujiki M., Kumabe T., Sakata Y. Long-term effectiveness of Gliadel implant for malignant glioma and prognostic factors for survival: 3-year results of a postmarketing surveillance in Japan. Neurooncol Adv. 2022; 4(1): vdab189. doi: 10.1093/noajnl/vdab189.

37. Zhang J., Chen J., Lin K. Immunogenic cell death-based oncolytic virus therapy: A sharp sword of tumor immunotherapy. Eur J Pharmacol. 2024; 981: 176913. doi: 10.1016/j.ejphar.2024.176913.

38. Terrível M., Gromicho C., Matos A.M. Oncolytic viruses: what to expect from their use in cancer treatment. Microbiol Immunol. 2020; 64(7): 477–92. doi: 10.1111/1348-0421.12753.

39. Saha D., Rabkin S.D., Martuza R.L. Temozolomide antagonizes oncolytic immunovirotherapy in glioblastoma. J Immunother Cancer. 2020; 8(1): e000345. doi: 10.1136/jitc-2019-000345.

40. Mondal M., Guo J., He P., Zhou D. Recent advances of oncolytic virus in cancer therapy. Hum Vaccin Immunother. 2020; 16(10): 2389–402. doi: 10.1080/21645515.2020.1723363.

41. Melnikova E.V., Rachinskaya O.A., Merkulov V.A. Advanced therapy medicines based on oncolytic viruses (Part I: development and authorisation of products in China). Тhе Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products. 2021; 11(3): 148–59. (in Russian). doi: 10.30895/1991-2919-2021-11-148-159. EDN: HLUFAC.

42. Todo T., Ino Y., Ohtsu H., Shibahara J., Tanaka M. A phase I/ II study of triple-mutated oncolytic herpes virus G47∆ in patients with progressive glioblastoma. Nat Commun. 2022; 13(1): 4119. doi: 10.1038/s41467-022-31262-y.

43. Kardani K., Sanchez Gil J., Rabkin S.D. Oncolytic herpes simplex viruses for the treatment of glioma and targeting glioblastoma stem-like cells. Front Cell Infect Microbiol. 2023; 13: 1206111. doi: 10.3389/fcimb.2023.1206111.

44. Dang J.W., Tiwari S.K., Qin Y., Rana T.M. Genome-wide Integrative Analysis of Zika-Virus-Infected Neuronal Stem Cells Reveals Roles for MicroRNAs in Cell Cycle and Stemness. Cell Rep. 2019; 27(12): 3618–28.e5. doi: 10.1016/j.celrep.2019.05.059.

45. Zhang S., Loy T., Ng T.S., Lim X.N., Chew S.V., Tan T.Y., Xu M., Kostyuchenko V.A., Tukijan F., Shi J., Fink K., Lok S.M. A Human Antibody Neutralizes Different Flaviviruses by Using Different Mechanisms. Cell Rep. 2020; 31(4): 107584. doi: 10.1016/j.celrep.2020.107584.

46. Chiocca E.A., Nakashima H., Kasai K., Fernandez S.A., Oglesbee M. Preclinical Toxicology of rQNestin34.5v.2: An Oncolytic Herpes Virus with Transcriptional Regulation of the ICP34.5 Neurovirulence Gene. Mol Ther Methods Clin Dev. 2020; 17: 871–93.

47. Larocca C.A., LeBoeuf N.R., Silk A.W., Kaufman H.L. An Update on the Role of Talimogene Laherparepvec (T-VEC) in the Treatment of Melanoma: Best Practices and Future Directions. Am J Clin Dermatol. 2020; 21(6): 821–32. doi: 10.1007/s40257-020-00554-8.

48. Jackson C.M., Choi J., Lim M. Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat Immunol 2019; 20(9): 1100–109. doi: 10.1038/s41590-019-0433-y.

49. Zhou C., Chen Q., Chen Y., Qin C.F. Oncolytic Zika Virus: New Option for Glioblastoma Treatment. DNA Cell Biol. 2023; 42(6): 267–73.

50. Chen Q., Wu J., Ye Q., Ma F., Zhu Q., Wu Y., Shan C., Xie X., Li D., Zhan X., Li C., Li X.F., Qin X., Zhao T., Wu H., Shi P.Y., Man J., Qin C.F. Treatment of Human Glioblastoma with a Live Attenuated Zika Virus Vaccine Candidate. mBio. 2018; 9(5): e01683-18. doi: 10.1128/mBio.01683-18.

51. Nair S., Mazzoccoli L., Jash A., Govero J., Bais S.S., Hu T., Fontes-Garfias C.R., Shan C., Okada H., Shresta S., Rich J.N., Shi P.Y., Diamond M.S., Chheda M.G. Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight. 2021; 6(1): e144619. doi: 10.1172/jci.insight.144619.

52. Chiocca E.A., Nakashima H., Kasai K., Fernandez S.A., Oglesbee M. Preclinical Toxicology of rQNestin34.5v.2: An Oncolytic Herpes Virus with Transcriptional Regulation of the ICP34.5 Neurovirulence Gene. Mol Ther Methods Clin Dev. 2020; 17: 871–93. doi: 10.1016/j.omtm.2020.03.028.

53. Fröhlich A., Niebel D., Fietz S., Egger E., Buchner A., Sirokay J., Landsberg J. Talimogene laherparepvec treatment to overcome locoregional acquired resistance to immune checkpoint blockade in tumor stage IIIB-IV M1c melanoma patients. Cancer Immunol Immunother. 2020; 69(5): 759–69. doi: 10.1007/s00262-020-02487-x.

54. Immidisetti A.V., Nwagwu C.D., Adamson D.C., Patel N.V., Carbonell A.M. Clinically Explored Virus-Based Therapies for the Treatment of Recurrent High-Grade Glioma in Adults. Biomedicines. 2021; 9(2): 138. doi: 10.3390/biomedicines9020138.

55. Shoaf M.L., Desjardins A. Oncolytic Viral Therapy for Malignant Glioma and Their Application in Clinical Practice. Neurotherapeutics. 2022; 19(6): 1818–31. doi: 10.1007/s13311-022-01256-1.

56. Rius-Rocabert S., García-Romero N., García A., Ayuso-Sacido A., Nistal-Villan E. Oncolytic Virotherapy in Glioma Tumors. Int J Mol Sci. 2020; 21(20): 7604. doi: 10.3390/ijms21207604.

57. Bretscher C., Marchini A. H-1 Parvovirus as a Cancer-Killing Agent: Past, Present, and Future. Viruses. 2019; 11(6): 562. doi: 10.3390/v11060562.

58. Nassiri F., Patil V., Yefet L.S., Singh O., Liu J., Dang R.M.A., Yamaguchi T.N., Daras M., Cloughesy T.F., Colman H., Kumthekar P.U., Chen C.C., Aiken R., Groves M.D., Ong S.S., Ramakrishna R., Vogelbaum M.A., Khagi S., Kaley T., Melear J.M., Peereboom D.M., Rodriguez A., Yankelevich M., Nair S.G., Puduvalli V.K., Aldape K., Gao A., López-Janeiro Á., de Andrea C.E., Alonso M.M., Boutros P., Robbins J., Mason W.P., Sonabend A.M., Stupp R., Fueyo J., Gomez-Manzano C., Lang F.F., Zadeh G. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat Med. 2023; 29(6): 1370–78. doi: 10.1038/s41591-023-02347-y.

59. Mauldin I.S., Jo J., Wages N.A., Yogendran L.V., Mahmutovic A., Young S.J., Lopes M.B., Slingluff C.L. Jr., Erickson L.D., Fadul C.E. Proliferating CD8+ T Cell Infiltrates Are Associated with Improved Survival in Glioblastoma. Cells. 2021; 10(12): 3378. doi: 10.3390/cells10123378.

60. Collins S.A., Shah A.H., Ostertag D., Kasahara N., Jolly D.J. Clinical development of retroviral replicating vector Toca 511 for gene therapy of cancer. Expert Opin Biol Ther. 2021; 21(9): 1199–214. doi: 10.1080/14712598.2021.1902982.

61. Hogan D.J., Zhu J.J., Diago O.R., Gammon D., Haghighi A., Lu G., Das A., Gruber H.E., Jolly D.J., Ostertag D. Molecular Analyses Support the Safety and Activity of Retroviral Replicating Vector Toca 511 in Patients. Clin Cancer Res. 2018; 24(19): 4680–93. doi: 10.1158/10780432.CCR-18-0619.

62. Desjardins A., Gromeier M., Herndon J.E. 2nd, Beaubier N., Bolognesi D.P., Friedman A.H., Friedman H.S., McSherry F., Muscat A.M., Nair S., Peters K.B., Randazzo D., Sampson J.H., Vlahovic G., Harrison W.T., McLendon R.E., Ashley D., Bigner D.D. Recurrent Glioblastoma Treated with Recombinant Poliovirus. N Engl J Med. 2018; 379(2): 150–61. doi: 10.1056/NEJMoa1716435.

63. Bhatt D.K., Daemen T. Molecular Circuits of Immune Sensing and Response to Oncolytic Virotherapy. Int J Mol Sci. 2024; 25(9): 4691. doi: 10.3390/ijms25094691.

64. Schin A.M., Diesterbeck U.S., Moss B. Insights into the Organization of the Poxvirus Multicomponent Entry-Fusion Complex from Proximity Analyses in Living Infected Cells. J Virol. 2021; 95(16): e0085221. doi: 10.1128/JVI.00852-21.

65. Bidgood S.R. Continued poxvirus research: From foe to friend. PLoS Biol. 2019; 17(1): e3000124. doi: 10.1371/journal.pbio.3000124.

66. Shi Z., Liu B., Huang C., Xie W., Cen Y., Chen L., Liang M. An oncolytic vaccinia virus armed with anti-human-PD-1 antibody and anti-human-4-1BB antibody double genes for cancer-targeted therapy. Biochem Biophys Res Commun. 2021; 559: 176–82. doi: 10.1016/j.bbrc.2021.04.078.

67. Guo Z.S., Lu B., Guo Z., Giehl E., Feist M., Dai E., Liu W., Storkus W.J., He Y., Liu Z., Bartlett D.L. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer. 2019; 7(1): 6. doi: 10.1186/s40425-018-0495-7.

68. Vasileva N., Ageenko A., Byvakina A., Sen’kova A., Kochneva G., Mishinov S., Richter V., Kuligina E. The Recombinant Oncolytic Virus VV-GMCSF-Lact and Chemotherapy Drugs against Human Glioma. Int J Mol Sci. 2024; 25(8): 4244. doi: 10.3390/ijms25084244.

69. Yadav S., Priya A., Borade D.R., Agrawal-Rajput R. Macrophage subsets and their role: co-relation with colony-stimulating factor-1 receptor and clinical relevance. Immunol Res. 2023; 71(2): 130–52. doi: 10.1007/s12026-022-09330-8.

70. Troitskaya O., Varlamov M., Nushtaeva A., Richter V., Koval O. Recombinant Lactaptin Induces Immunogenic Cell Death and Creates an Antitumor Vaccination Effect in Vivo with Enhancement by an IDO Inhibitor. Molecules. 2020; 25(12): 2804. doi: 10.3390/molecules25122804.

71. Vasileva N., Ageenko A., Dmitrieva M., Nushtaeva A., Mishinov S., Kochneva G., Richter V., Kuligina E. Double Recombinant Vaccinia Virus: A Candidate Drug against Human Glioblastoma. Life (Basel). 2021; 11(10): 1084. doi: 10.3390/life11101084.

72. Ageenko A., Vasileva N., Yusubalieva G., Sen’kova A., Romashchenko A., Gubskiy I., Zabozlaev F., Zavyalov E., Dymova M., Richter V., Kuligina E. Efficacy of Oncolytic Virus VV-GMCSF-Lact Against Immunocompetent Glioma. Cells. 2025; 14(20): 1619. doi: 10.3390/cells14201619.

73. Edwards T.G., Bloom D.C., Fisher C. The ATM and Rad3-Related (ATR) Protein Kinase Pathway Is Activated by Herpes Simplex Virus 1 and Required for Efficient Viral Replication. J Virol. 2018; 92(6): e01884–17. doi: 10.1128/JVI.01884-17.

74. Sharma R., Mishra A., Bhardwaj M., Singh G., Indira Harahap L.V., Vanjani S., Pan C.H., Nepali K. Medicinal chemistry breakthroughs on ATM, ATR, and DNA-PK inhibitors as prospective cancer therapeutics. J Enzyme Inhib Med Chem. 2025; 40(1): 2489720. doi: 10.1080/14756366.2025.2489720.

75. Dymova M.A., Schneider T.A., Chechetkina S.A., Petrov G.O., Malysheva D.O., Drokov D.V., Ageenko A.B., Vasilyeva N.S., Richter V.A., Kuligina E.V. Cytotoxic effect of the oncolytic virus VV-GMCSF-Lact on 3D cultures of human glioblastoma cells U-87 MG. Acta Biomed Sci. 2023; 8(6): 162–69. (in Russian). doi: 10.29413/ABS.2023-8.6.15. EDN: JCNLNS.

76. Jia J.L., Alshamsan B., Ng T.L. Temozolomide Chronotherapy in Glioma: A Systematic Review. Curr Oncol. 2023; 30(2): 1893–902. doi: 10.3390/curroncol30020147.


Review

For citations:


Vengler D.E., Kuligina E.V., Vasileva N.S., Richter V.A., Chernyshovа A.L., Tamkovich S.N. Oncolytic viruses as promising agents for treating glioblastoma. Siberian journal of oncology. 2025;24(6):138-148. https://doi.org/10.21294/1814-4861-2025-24-6-138-148

Views: 48

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)