High-throughput DNA methylation analysis technologies: from genome to gene panels
https://doi.org/10.21294/1814-4861-2025-24-6-149-159
Abstract
Background. DNA methylation regulates numerous biological processes, mediating normal development. Alterations in methylation patterns are associated with multiple pathological conditions like hereditary diseases and cancer, making them valuable clinical biomarkers for patient stratification, disease monitoring, early diagnosis, and prediction of response to therapy. Highly targeted, high-throughput methodologies focusing on critical genomic loci enable precise identification of distinct methylation signatures. the aim of the study was to analyze and summarize literature data describing the use of high-throughput DNA methylation analysis technologies, including those based on targeted approaches.
Material and Methods. A systematic analysis of literature data was conducted using the PubMed, Web of Science, and Scopus databases, focusing on the characteristics of high-throughput DNA methylation analysis used in cancer and some genetic diseases. A total of 113 sources were analyzed, chronologically covering the period from 2000 to June 2025, 32 of which were used to write the review.
Results. The existing technologies for high-throughput methylome analysis, DNA conversion methods, and their advantages and limitations were summarized. In addition, the current targeted enrichment methods, their strengths and weaknesses, and potential applications in scientific and diagnostic practice were discussed.
Conclusion. DNA methylation analysis has evolved from a basic research tool into a cornerstone of translational medicine, particularly in oncology. Modern methylome analysis techniques facilitate the discovery of epigenetic markers critical for diagnosing diseases, assessing prognosis, guiding therapy selection, and identifying molecular targets for targeted drugs. Targeted DNA enrichment increases analytical precision and sensitivity while reducing costs. Furthermore, specialized strategies permit targeted analysis even with challenging samples. Combined with the flexibility to focus on specific genomic regions, these advantages make targeted approaches viable not only in academic research but also in routine clinical diagnostics.
About the Authors
A. S. ZuevRussian Federation
Andrew S. Zuev - Junior Researcher, Laboratory of Instrumental Genomics, Researcher ID (WOS): KHY-8591-2024. Author ID (Scopus): 58187773100.
10, Ushaika River Embankment, Tomsk, 634009
U. A. Bokova
Russian Federation
Ustinya A. Bokova - PhD, Researcher, Laboratory of Tumor Progression Biology, Researcher ID (WOS): AAX-9705-2021. Author ID (Scopus): 57226147765.
5, Kooperativny St., Tomsk, 634009
A. A. Vasilyev
Russian Federation
Stanislav A. Vasilyev - DSc, Head of the Laboratory of Instrumental Genomics, Researcher ID (WOS): C-5296-2014. Author ID (Scopus): 56110254200.
10, Ushaika River Embankment, Tomsk, 634009
References
1. Yong W.S., Hsu F.M., Chen P.Y. Profiling genome-wide DNA methylation. Epigenetics Chromatin. 2016; 9: 26. doi: 10.1186/s13072016-0075-3.
2. Csepregi A., Ebert M.P., Röcken C., Schneider-Stock R., Hoffmann J., Schulz H. U., Roessner A., Malfertheiner P. Promoter methylation of CDKN2A and lack of p16 expression characterize patients with hepatocellular carcinoma. BMC cancer. 2010; 10: 317. doi: 10.1186/14712407-10-317.
3. Geissler F., Nesic K., Kondrashova O., Dobrovic A., Swisher E.M., Scott C.L., Wakefield M. Jr. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol. 2024; 16: 17588359231220511. doi: 10.1177/17588359231220511.
4. Lukosiute-Urboniene A., Mazeike A., Kazokaite M., Silkuniene G., Silkunas M., Barauskas V., Barauskas G., Gulbinas A., Dauksa A., Dambrauskas Z. Epigenetic Regulation of APAF-1 Through DNA Methylation in Pancreatic Cancer. Anticancer Res. 2020; 40(7): 3765–79. doi: 10.21873/anticanres.14366.
5. Kurpiel B., Thomas M. S., Mubeen M., Ring K.L., Modesitt S.C., Moskaluk C.A., Mills A.M. MLH1/PMS2-deficient Endometrial Carcinomas in a Universally Screened Population: MLH1 Hypermethylation and Germline Mutation Status. Int J Gynecol Pathol. 2022; 41(1): 1–11. doi: 10.1097/PGP.0000000000000767.
6. Parris T.Z., Kovács A., Hajizadeh S., Nemes S., Semaan M., Levin M., Karlsson P., Helou K. Frequent MYC coamplification and DNA hypomethylation of multiple genes on 8q in 8p11-p12-amplified breast carcinomas. Oncogenesis. 2014; 3(3): e95. doi: 10.1038/oncsis.2014.8.
7. Pavicic W., Joensuu E.I., Nieminen T., Peltomäki P. LINE-1 hypomethylation in familial and sporadic cancer. J Mol Med (Berl). 2012; 90(7): 827–35. doi: 10.1007/s00109-011-0854-z.
8. Huin V., Deramecourt V., Caparros-Lefebvre D., Maurage C.A., Duyckaerts C., Kovari E., Pasquier F., Buée-Scherrer V., Labreuche J., Behal H., Buée L., Dhaenens C.M., Sablonnière B. The MAPT gene is differentially methylated in the progressive supranuclear palsy brain. Mov Disord. 2016; 31(12): 1883–90. doi: 10.1002/mds.26820.
9. Fedotova E.Y., Iakovenko E.V., Abramycheva N.Y., Illarioshkin S.N. SNCA Gene Methylation in Parkinson’s Disease and Multiple System Atrophy. Epigenomes. 2023; 7(1): 5. doi: 10.3390/epigenomes7010005.
10. Behl T., Kyada A., Roopashree R., Nathiya D., Arya R., Kumar M.R., Khalid M., Gulati M., Sachdeva M., Fareed M., Patra P.K., Agrawal A., Wal P., Gasmi A. Epigenetic biomarkers in Alzheimer’s disease: Diagnostic and prognostic relevance. Ageing Res Rev. 2024; 102: 102556. doi: 10.1016/j.arr.2024.102556.
11. Elhamamsy A.R. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet. 2017; 34(5): 549–62. doi: 10.1007/s10815-017-0895-5.
12. Li Q., Hermanson P.J., Springer N.M. Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing. Methods Mol Biol. 2018; 1676: 185–96. doi: 10.1007/978-1-4939-7315-6_11.
13. Gao Y., Zhao H., An K., Liu Z., Hai L., Li R., Zhou Y., Zhao W., Jia Y., Wu N., Li L., Ying J., Wang J., Xu B., Wu Z., Tong Z., He J., Sun Y. Whole-genome bisulfite sequencing analysis of circulating tumour DNA for the detection and molecular classification of cancer. Clin Transl Med. 2022; 12(8): e1014. doi: 10.1002/ctm2.1014.
14. Nakabayashi K., Yamamura M., Haseagawa K., Hata K. Reduced Representation Bisulfite Sequencing (RRBS). Methods Mol Biol. 2023; 2577: 39–51. doi: 10.1007/978-1-0716-2724-2_3.
15. Liu Y., Cheng J., Siejka-Zielińska P., Weldon C., Roberts H., Lopopolo M., Magri A., D’Arienzo V., Harris J.M., McKeating J.A., Song C.X. Accurate targeted long-read DNA methylation and hydroxymethylation sequencing with TAPS. Genome Biol. 2020; 21(1): 54. doi: 10.1186/s13059-020-01969-6.
16. Vaisvila R., Ponnaluri V.K.C., Sun Z., Langhorst B.W., Saleh L., Guan S., Dai N., Campbell M.A., Sexton B.S., Marks K., Samaranayake M., Samuelson J.C., Church H.E., Tamanaha E., Corrêa I.R., Pradhan S. Jr., Dimalanta E.T., Evans T.C., Williams L. Jr., Davis T.B. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 2021; 31(7): 1280–89. doi: 10.1101/gr.266551.120.
17. Guo P., Zheng H., Li Y., Li Y., Xiao Y., Zheng J., Zhu X., Xu H., He Z., Zhang Q., Chen J., Qiu M., Jiang M., Liu P., Chen H. Hepatocellular carcinoma detection via targeted enzymatic methyl sequencing of plasma cell-free DNA. Clin Epigenetics. 2023; 15(1): 2. doi: 10.1186/s13148-022-01420-6.
18. Clark S.J., Smallwood S.A., Lee H.J., Krueger F., Reik W., Kelsey G. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc. 2017; 12(3): 534–47. doi: 10.1038/nprot.2016.187.
19. Liu H., Zeng Q., Zhou J., Bartlett A., Wang B.A., Berube P., Tian W., Kenworthy M., Altshul J., Nery J.R., Chen H., Castanon R.G., Zu S., Li Y.E., Lucero J., Osteen J.K., Pinto-Duarte A., Lee J., Rink J., Cho S., Emerson N., Nunn M., O’Connor C., Wu Z., Stoica I., Yao Z., Smith K.A., Tasic B., Luo C., Dixon J.R., Zeng H., Ren B., Behrens M.M., Ecker J.R. Single-cell DNA methylome and 3D multi-omic atlas of the adult mouse brain. Nature. 2023; 624(7991): 366–77. doi: 10.1038/s41586-023-06805-y.
20. Clark S.J., Argelaguet R., Kapourani C.A., Stubbs T.M., Lee H.J., Alda-Catalinas C., Krueger F., Sanguinetti G., Kelsey G., Marioni J.C., Stegle O., Reik W. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun. 2018; 9(1): 781. doi: 10.1038/s41467-018-03149-4.
21. Miura F., Shibata Y., Miura M., Sangatsuda Y., Hisano O., Araki H., Ito T. Highly efficient single-stranded DNA ligation technique improves low-input whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res. 2019; 47(15): e85. doi: 10.1093/nar/gkz435.
22. Jain M., Koren S., Miga K.H., Quick J., Rand A.C., Sasani T.A., Tyson J.R., Beggs A.D., Dilthey A.T., Fiddes I.T., Malla S., Marriott H., Nieto T., O’Grady J., Olsen H.E., Pedersen B.S., Rhie A., Richardson H., Quinlan A.R., Snutch T.P., Tee L., Paten B., Phillippy A.M., Simpson J.T., Loman N.J., Loose M. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol. 2018; 36(4): 338–45. doi: 10.1038/nbt.4060.
23. Singh R.R. Target Enrichment Approaches for Next-Generation Sequencing Applications in Oncology. Diagnostics (Basel). 2022; 12(7): 1539. doi: 10.3390/diagnostics12071539.
24. Horn S. Target enrichment via DNA hybridization capture. Methods Mol Biol. 2012; 840: 177–88. doi: 10.1007/978-1-61779-516-9_21.
25. Kozarewa I., Armisen J., Gardner A.F., Slatko B.E., Hendrickson C.L. Overview of Target Enrichment Strategies. Curr Protoc Mol Biol. 2015; 112: 7.21.1–7.21.23. doi: 10.1002/0471142727.mb0721s112.
26. Wen L., Li J., Guo H., Liu X., Zheng S., Zhang D., Zhu W., Qu J., Guo L., Du D., Jin X., Zhang Y., Gao Y., Shen J., Ge H., Tang F., Huang Y., Peng J. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. Cell Res. 2015; 25(11): 1250–64. doi: 10.1038/cr.2015.126.
27. Wang J., Xia Y., Li L., Gong D., Yao Y., Luo H., Lu H., Yi N., Wu H., Zhang X., Tao Q., Gao F. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genomics. 2013; 14:11. doi: 10.1186/1471-2164-14-11.
28. Tanas A.S., Borisova M.E., Kuznetsova E.B., Rudenko V.V., Karandasheva K.O., Nemtsova M.V., Izhevskaya V.L., Simonova O.A., Larin S.S., Zaletaev D.V., Strelnikov V.V. Rapid and affordable genome-wide bisulfite DNA sequencing by XmaI-reduced representation bisulfite sequencing. Epigenomics. 2017; 9(6): 833–47. doi: 10.2217/epi-2017-0031.
29. Slesarev A., Viswanathan L., Tang Y., Borgschulte T., Achtien K., Razafsky D., Onions D., Chang A., Cote C. CRISPR/CAS9 targeted CAPTURE of mammalian genomic regions for characterization by NGS. Sci Rep. 2019; 9(1): 3587. doi: 10.1038/s41598-019-39667-4.
30. Malekshoar M., Azimi S.A., Kaki A., Mousazadeh L., Motaei J., & Vatankhah M. CRISPR-Cas9 Targeted Enrichment and Next-Generation Sequencing for Mutation Detection. J Mol Diagn. 2023; 25(5): 249–62. doi: 10.1016/j.jmoldx.2023.01.010.
31. Gabrieli T., Sharim H., Fridman D., Arbib N., Michaeli Y., Ebenstein Y. Selective nanopore sequencing of human BRCA1 by Cas9-assisted targeting of chromosome segments (CATCH). Nucleic Acids Res. 2018; 46(14): e87. doi: 10.1093/nar/gky411.
32. Payne A., Holmes N., Clarke T., Munro R., Debebe B.J., Loose M. Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat Biotechnol. 2021; 39(4): 442–50. doi: 10.1038/s41587-020-00746-x.
Review
For citations:
Zuev A.S., Bokova U.A., Vasilyev A.A. High-throughput DNA methylation analysis technologies: from genome to gene panels. Siberian journal of oncology. 2025;24(6):149-159. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-6-149-159
JATS XML








































