MODELING OF TARGETED DRUG DELIVERY PART II. MULTIPLE DRUG ADMINISTRATION
https://doi.org/10.21294/1814-4861-2017-16-2-36-41
Abstract
In oncology practice, despite significant advances in early cancer detection, surgery, radiotherapy, laser therapy, targeted therapy, etc., chemotherapy is unlikely to lose its relevance in the near future. In this context, the development of new antitumor agents is one of the most important problems of cancer research. In spite of the importance of searching for new compounds with antitumor activity, the possibilities of the “old” agents have not been fully exhausted. Targeted delivery of antitumor agents can give them a “second life”. When developing new targeted drugs and their further introduction into clinical practice, the change in their pharmacodynamics and pharmacokinetics plays a special role. The paper describes a pharmacokinetic model of the targeted drug delivery. The conditions under which it is meaningful to search for a delivery vehicle for the active substance were described. Primary screening of antitumor agents was undertaken to modify them for the targeted delivery based on underlying assumptions of the model.
About the Authors
A. V. ZaborovskiyRussian Federation
Zaborovskiy Andrey V. - MD, PhD, Associate Professor, Pharmacology Department.
20, Delegatskaya Street, build 1, 1127473-Moscow. E-mail: azabor@mail.ru. SPIN-code: 9592-2405
K. G. Gurevich
Russian Federation
Gurevich Konstantin G. - MD, DSc.
20, Delegatskaya Street, build 1, 1127473-Moscow. E-mail: kgurevich@mail.ru. SPIN-code: 4344-3045
References
1. Liang C., Xu L., Song G., Liu Z. Emerging nanomedicine approaches fighting tumor metastasis: animal models, metastasis-targeted drug delivery, phototherapy, and immunotherapy. Chem Soc Rev. 2016 Nov 7; 45 (22): 6250–6269.
2. Estanqueiro M., Amaral M.H., Conceição J., Sousa Lobo J.M. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces. 2015 Feb 1; 126: 631–48. doi: 10.1016/j.colsurfb.2014.12.041.
3. Pérez-Herrero E., Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015 Jun; 93: 52–79. doi: 10.1016/j.ejpb.2015.03.018.
4. Drbohlavova J., Chomoucka J., Adam V., Ryvolova M., Eckschlager T., Hubalek J., Kizek R. Nanocarriers for anticancer drugs-new trends in nanomedicine. Curr Drug Metab. 2013 Jun; 14 (5): 547–64.
5. Kirtane A.R., Kalscheuer S.M., Panyam J. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Adv Drug Deliv Rev. 2013 Nov; 65 (13–14): 1731–47. doi: 10.1016/j.addr.2013.09.001.
6. Iyer A.K., Singh A., Ganta S., Amiji M.M. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev. 2013 Nov; 65 (13–14): 1784–802. doi: 10.1016/j.addr.2013.07.012.
7. Gao B., Yeap S., Clements A., Balakrishnar B., Wong M., Gurney H. Evidence for therapeutic drug monitoring of targeted anticancer therapies. J Clin Oncol. 2012 Nov 10; 30 (32): 4017–25. doi: 10.1200/JCO.2012.43.5362.
8. Decosterd L.A., Widmer N., Zaman K., Cardoso E., Buclin T., Csajka C. Therapeutic drug monitoring of targeted anticancer therapy. Biomark Med. 2015; 9 (9): 887–93. doi: 10.2217/bmm.15.78.
9. Paci A., Veal G., Bardin C., Levêque D., Widmer N., Beijnen J., Astier A., Chatelut E. Review of therapeutic drug monitoring of anticancer drugs part cytotoxics. Eur J Cancer. 2014 Aug; 50 (12): 2010–9. doi: 10.1016/j.ejca.2014.04.014.
10. Widmer N., Bardin C., Chatelut E., Paci A., Beijnen J., Levêque D., Veal G., Astier A. Review of therapeutic drug monitoring of anticancer drugs part two-targeted therapies. Eur J Cancer. 2014 Aug; 50 (12): 2020–36. doi: 10.1016/j.ejca.2014.04.015.
11. Belousov Ju.B., Gurevich K.G. Clinical pharmacokinetics. The practice of drugs dosing. M.: Litterra, 2005; 288 p. [in Russian]
12. Belousov Ju.B., Gurevich K.G. General and particular clinical pharmacokinetics. M.: Remedium, 2006; 807 p. [in Russian]
13. Belousov Ju.B., Leonova M.V., Belousov D.Ju., Vjalkov A.I., Vorob’ev P.A., Gracianskaja A.N., Gurevich K.G., Zubkov V.V., Katlinskij A.V., Moiseev S.V., Sokolov A.V. Basics of clinical pharmacology and rational pharmacotherapy. M.: Bionika, 2002; 368 p. [in Russian]
14. Belousov Ju.B., Gurevich K.G., Strozhakov G.I. Therapeutic drug monitoring of antiviral drugs. Klinicheskaja farmakokinetika, 2004; 1: 47–49. [in Russian]
15. Zaborovskiy A.V., Gurevich K.G. Simulation of targeted transport for drug substances. Part I. A single administration. Siberian Journal of Oncology. 2017; 16 (1): 59–65. doi: 10.21294/1814-4861-2017-16-1-59-65. [in Russian]
16. Pjataev N.A., Gurevich K.G., Skopin P.I., Minaeva O.V. Targeted drug therapy in oncology. Medicina kriticheskih sostojanij. 2010; 5: 3. [in Russian]
17. Berezov T.T., Jaglova N.V., Dmitrieva T.B., Zhirkov Ju.A., Chehonin V.P. The directional transport of drugs via liposomes. Vestnik Rossijskoj akademii medicinskih nauk. 2004; 5: 42–47. [in Russian]
18. Pjataev N.A., Gurevich K.G., Beljaev A.N., Minaeva O.V. Pharmacokinetics and pharmacodynamics of of antibacterial drugs in the directed transport in patients with severe pneumonia. Medicina kriticheskih sostojanij. 2008; 3 (3): 11–17. [in Russian]
19. Zaborovskij A.V., Tararina L.A., Muljar A.G., Pjataev N.A., Gurevich K.G. Development of new antitumor drugs based on polymeric nanoparticles for the treatment of neoplasia. Sistemnyj analiz i upravlenie v biomedicinskih sistemah, 2016; 15 (3): 401–403. [in Russian]
20. Gurevich K.G. Effect of blood protein concentrations on drugdosing regimes: practical guidance. Theor Biol Med Model. 2013 Mar 18; 10: 20. doi: 10.1186/1742-4682-10-20.
21. Barnard R., Gurevich K.G. In vitro bioassay as a predictor of in vivo response. Theor Biol Med Model. 2005 Feb 7; 2: 3.
22. Abel T.J., Ryken T., Lesniak M.S., Gabikian P. Gliadel for brain metastasis. Surg Neurol Int. 2013 May 2; 4 (Suppl 4): S289–93. doi: 10.4103/2152-7806.111305.
23. Xing W.K., Shao C., Qi Z.Y., Yang C., Wang Z. The role of Gliadel wafers in the treatment of newly diagnosed GBM: a meta-analysis. Drug Des Devel Ther. 2015 Jun 29; 9: 3341–8. doi: 10.2147/DDDT.S85943.
24. Namiki Y., Fuchigami T., Tada N., Kawamura R., Matsunuma S., Kitamoto Y., Nakagawa M. Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring. Acc Chem Res. 2011 Oct 18; 44 (10): 1080–93. doi: 10.1021/ar200011r.
Review
For citations:
Zaborovskiy A.V., Gurevich K.G. MODELING OF TARGETED DRUG DELIVERY PART II. MULTIPLE DRUG ADMINISTRATION. Siberian journal of oncology. 2017;16(2):36-41. (In Russ.) https://doi.org/10.21294/1814-4861-2017-16-2-36-41