EXPRESSION of MACROPHAGe-ASSOCIATED GENES IN BREAST TUMORS: RELATION TO TUMOR PROGRESSION
https://doi.org/10.21294/1814-4861-2017-16-6-47-56
Abstract
Background. Tumor-associated macrophages (TAM) are the main innate immunity cells that regulate the relationship between the infiltrating immunocompetent cells, tumor cells and other components of the microenvironment. TAMs can promote tumor cell proliferation and angiogenesis and can also contribute to tumor response to chemotherapy. The purpose of the study was to assess the prognostic significance of YKL39 and CCL18 gene expression in breast TAMs prior to treatment. Material and methods. A total of 96 patients with histologically verified invasive breast carcinoma of no special type (T1–4N0–3M0) were included into the study. The patients received 2–4 cycles of neoadjuvant chemotherapy. The 5-year metastasis-free survival was analyzed. The YKL39 and CCL18 expression levels were assessed using TaqMan real-time RTPCR. The expression level of >1 (higher than that in the normal tissue) indicated the gene overexpression. Results. There was no association between the YKL39 and CCL18 gene expression levels and the clinical and pathologic features. However, the levels of YKL39 and CCL18 gene expressions were significantly higher in patients having no distant metastases within a 5-year follow-up. Metastasis-free survival was estimated in patients with overexpression of YKL39 and CCL18 genes (YKL39+CCL18+ ) and in patients with low and high expression levels (YKL39– CCL18– , YKL39– CCL18+, YKL39+CCL18– ) using the Kaplan-Meier method. All 100 % of patients (10 out of 10) with YKL39+CCL18+ macrophage phenotype in a tumor were alive and had no evidence of tumor progression during 5 years of follow-up. In patients with YKL39+CCL18– phenotype, the metastasis-free survival rate was 85 %. In patients with YKL39– CCL18+ and YKL39– CCL18– phenotypes, the 5-year survival rates were 71 % and 69 %, respectively. A statistically significant difference in metastasis-free survival between patients with YKL39+CCL18+ phenotype and YKL39– CCL18+ or YKL39– CCL18– phenotypes was found. Data obtained showed the association between TAM marker gene expression and metastasis free survival of breast cancer patients treated with NACT.
About the Authors
N. V. LitviakovRussian Federation
PhD
SPIN-code: 2546-0181
AuthorID: 183820
M. M. Tsyganov
Russian Federation
PhD
SPIN-code: 1253-0240
AuthorID: 730156
M. K. Ibragimova
Russian Federation
SPIN-code: 2340-1628
AuthorID: 637822
ResearchID: C-8609-2012
SCOPUS: 57130579200
I. V. Deryusheva
Russian Federation
SPIN-code: 5560-6131
AuthorID: 881749
P. V. Kazantseva
Russian Federation
MD, PhD
SPIN-code: 7881-6259
AuthorID: 857960
I. V. Mitrofanova
Russian Federation
MD
SPIN-code: 6272-8422
AuthorID: 56862097400
I. G. Frolova
Russian Federation
MD, DSc, Professor
SPIN-code: 9800-9777
AuthorID: 463121
SCOPUS: 7006413170
M. A. Buldakov
Russian Federation
PhD
SPIN-code: 7558-4726
AuthorID: 7922-2012
E. M. Slonimskaya
Russian Federation
MD, DSc, Professor
SPIN-code: 7763-6417
AuthorID: 183823
E. L. Choinzonov
Russian Federation
MD, DSc, Professor
SPIN-code: 2240-8730
AuthorID: 550195
Yu. G. Kzhyshkovska
Russian Federation
Professor, Tomsk State University (Tomsk, Russia); Institute of Transfusion Medicine and Immunology, Medical Faculty, Mannheim, University of Heidelberg (Mannheim, Germany)
N. V. Cherdyntseva
Russian Federation
PhD, Professor
SPIN-code: 5344-0990
AuthorID: 81344
References
1. Kaufmann M., von Minckwitz G., Mamounas E.P., Cameron D., Car-ey L.A., Cristofanilli M., Denkert C., Eiermann W., Gnant M., Harris J.R., Karn T., Liedtke C., Mauri D., Rouzier R., Ruckhaeberle E., Semiglazov V., Symmans W.F., Tutt A., Pusztai L. Recommendations from an international consensus conference on the current status and future of neoadjuvant systemic therapy in primary breast cancer. Ann Surg Oncol. 2012; 19 (5): 1508–16. doi: 10.1245/s10434-011-2108-2.
2. Liu B., Ezeogu L., Zellmer L., Yu B., Xu N., Joshua Liao D. Protecting the normal in order to better kill the cancer. Cancer Med. 2015; 4 (9): 1394–403. doi: 10.1002/cam4.488.
3. Kim E.S. Chemotherapy Resistance in Lung Cancer. Lung Cancer and Personalized Medicine: Springer. 2016: 189–209. doi: 10.1007/978-3-319-24223-1_10.
4. Findlay J.M., Castro-Giner F., Makino S., Rayner E., Kartsonaki C., Cross W., Kovac M., Ulahannan D., Palles C., Gillies R.S., MacGregor T.P., Church D., Maynard N.D., Buffa F., Cazier J.B., Graham T.A., Wang L.M., Sharma R.A., Middleton M., Tomlinson I. Differential clonal evolution in oesophageal cancers in response to neo-adjuvant chemotherapy. Nat Commun. 2016 Apr 5; 7: 11111. doi: 10.1038/ncomms11111.
5. Ibragimova M., Tsyganov M., Litviakov N. Natural and chemotherapy-induced clonal evolution of tumors. Biochemistry (Mosc). 2017 Apr; 82 (4): 413–425. doi: 10.1134/S0006297917040022.
6. De Palma M., Lewis C.E. Cancer: Macrophages limit chemotherapy. Nature. 2011 Apr 21; 472 (7343): 303–4. doi: 10.1038/472303a.
7. Hughes R., Qian B.Z., Rowan C., Muthana M., Keklikoglou I., Olson O.C., Tazzyman S., Danson S., Addison C., Clemons M., Gonzalez-An-gulo A.M., Joyce J.A., De Palma M., Pollard J.W., Lewis C.E. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 2015 Sep 1; 75 (17): 3479–91. doi: 10.1158/0008-5472.CAN-14-3587.
8. Yang J., Li X., Liu X., Liu Y. The role of tumor-associated macrophages in breast carcinoma invasion and metastasis. Int J Clin Exp Pathol. 2015 Jun 1; 8 (6): 6656–64.
9. Noy R., Pollard J.W. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41: 49–61. doi: 10.1016/j. immuni.2014.06.010.
10. Riabov V., Gudima A., Wang N., Mickley A., Orekhov A., Kzhyshkowska J. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014; 5: 75. doi: 10.3389/ fphys.2014.00075.
11. Mitchem J.B., Brennan D.J., Knolhoff B.L., Belt B.A., Zhu Y., Sanford D.E., Belaygorod L., Carpenter D., Collins L., Piwnica-Worms D., Hewitt S., Udupi G.M., Gallagher W.M., Wegner C., West B.L., Wang-Gillam A., Goedegebuure P., Linehan D.C., DeNardo D.G. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013; 73: 1128–1141. doi: 10.1158/0008-5472.
12. Zitvogel L., Galluzzi L., Smyth M.J., Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity. 2013; 39: 74–88. doi: 10.1016/j. immuni.2013.06.014.
13. Mantovani A., Biswas S.K., Galdiero M.R., Sica A., Locati M.
14. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013 Jan; 229 (2): 176–85. doi: 10.1002/path.4133.
15. Mantovani A., Locati M. Tumor-Associated Macrophages as a Paradigm of Macrophage Plasticity, Diversity, and Polarization Lessons and Open Questions. Arterioscler Thromb Vasc Biol. 2013; 33: 1478–1483. doi: 10.1161/ATVBAHA.113.300168.
16. DeNardo D.G., Brennan D.J., Rexhepaj E., Ruffell B., Shiao S.L., Madden S.F., Gallagher W.M., Wadhwani N., Keil S.D., Junaid S.A., Rugo H.S., Hwang E.S., Jirström K., West B.L., Coussens L.M. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Disc. 2011; 1: 54–67. doi: 10.1158/2159-8274.CD-10-0028.
17. Dijkgraaf E.M., Heusinkveld M., Tummers B., Vogelpoel L.T., Goedemans R., Jha V., Nortier J.W., Welters M.J., Kroep J.R., van der Burg S.H. Chemotherapy alters monocyte differentiation to favor generation of cancer-supporting M2 macrophages in the tumor microenvironment. Cancer Res. 2013; 73: 2480–92. doi: 10.1158/0008-5472.
18. Kzhyshkowska J., Gratchev A., Goerdt S. Human chitinases and chitinase-like proteins as indicators for inflammation and cancer. Biomarker Insights. 2007; 2: 128–46.
19. Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem. 2016; 397: 231–47. doi: 10.1515/hsz-2015-0269.
20. Shao R., Hamel K., Petersen L., Cao J.Q., Arenas R.B., Bigelow C., Bentley B., Yan W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis. Oncogene. 2009; 28: 4456. doi: 10.1038/onc.2009.292.
21. Gratchev A., Kzhyshkowska J., Kannookadan S., Ochsenreiter M., Popova A., Yu X., Mamidi S., Stonehouse-Usselmann E., Muller-Molinet I., Gooi L., Goerdt S. Activation of a TGF-β-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGF-β receptor II. J Immunol. 2008; 180: 6553–65.
22. Lin L., Chen Y.S., Yao Y.D., Chen J.Q., Chen J.N., Huang S.Y., Zeng Y.J., Yao H.R., Zeng S.H., Fu Y.S., Song E.W. CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotar-get. 2015; 6: 34758–34773. doi: 10.18632/oncotarget.5325.
23. Chen J., Yao Y., Gong C., Yu F., Su S., Chen J., Liu B., Deng H., Wang F., Lin L., Yao H., Su F., Anderson K.S., Liu Q., Ewen M.E., Yao X., Song E. CCL18 from tumor-associated macrophages promotes breast cancer metastasis via PITPNM3. Cancer Cell. 2011; 19: 541–555. doi: 10.1016/j.ccr.2011.02.006.
24. Nagarsheth N., Wicha M.S., Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017 Sep 30; 17 (9): 559–572. doi: 10.1038/nri.2017.49.
25. Schwartz G.F., Hortobagyi G.N. Proceedings of the consensus conference on neoadjuvant chemotherapy in carcinoma of the breast, April 26–28, 2003, Philadelphia, Pennsylvania. Cancer. 2004; 100 (12): 2512–32.
26. Wolff A.C., Hammond M.E., Hicks D.G., Dowsett M., McShane L.M., Allison K.H., Allred D.C., Bartlett J.M., Bilous M., Fitz-gibbons P., Hanna W., Jenkins R.B., Mangu P.B., Paik S., Perez E.A., Press M.F., Spears P.A., Vance G.H., Viale G., Hayes D.F.; American Society of Clinical Oncology; College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Medicine. 2007; 131: 18–43. doi: 10.1043/1543-2165(2007)131[18:ASOCCO]2.0.CO;2.
27. Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M., Denisov E.V., Garbukov E.Y., Merzliakova M.K., Volkomorov V.V., Vtorushin S.V., Zavyalova M.V., Slonimskaya E.M., Perelmuter V.M. Changing the expression vector of multidrug resistance genes is related to neoadjuvant chemotherapy response. Cancer Chemother Pharmacol. 2013; 71 (1): 153–63. doi: 10.1007/s00280-012-1992-x.
28. Litviakov N.V., Cherdyntseva N.V., Tsyganov M.M., Slonimskaya Е.M., Ibragimova M.K., Kazantseva P.V., Kzhyshkowska J., Choinzonov E.L. Deletions of multidrug resistance gene loci in breast cancer leads to the down-regulation of its expression and predict tumor response to neoadjuvant chemotherapy. Oncotarget. 2016 Feb 16; 7 (7): 7829–41. doi: 10.18632/oncotarget.6953.
29. Pfaffl M.W., Lange I.G., Daxenberger A., Meyer H.H. Tissue-specific expression pattern of estrogen receptors (ER): quantification of ER alpha and ER beta mRNA with real-time RT-PCR. APMIS. 2001 May; 109 (5): 345–55.
30. Martinez F.O., Helming L., Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009; 27: 451–83. doi: 10.1146/annurev.immunol.021908.132532.
31. Schutyser E., Richmond A., Van Damme J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J Leukoc Biol. 2005; 78: 14–26.
32. Kzhyshkowska J., Yin S., Liu T., Riabov V., Mitrofanova I. Role of chitinase-like proteins in cancer. Biol Chem. 2016 Mar; 397 (3): 231–47. doi: 10.1515/hsz-2015-0269.
33. Leung S.Y., Yuen S.T., Chu K.M., Mathy J.A., Li R., Chan A.S., Law S., Wong J., Chen X., So S. Expression profiling identifies chemokine (C-C motif) ligand 18 as an independent prognostic indicator in gastric cancer. Gastroenterol. 2004; 127: 457–469.
34. Sainz Jr. B., Martin B., Tatari M., Heeschen C., Guerra S. ISG15 is a critical microenvironmental factor for pancreatic cancer stem cells. Cancer Res. 2014 Dec 15; 74 (24): 7309–20. doi: 10.1158/0008-5472. CAN-14-1354.
Review
For citations:
Litviakov N.V., Tsyganov M.M., Ibragimova M.K., Deryusheva I.V., Kazantseva P.V., Mitrofanova I.V., Frolova I.G., Buldakov M.A., Slonimskaya E.M., Choinzonov E.L., Kzhyshkovska Yu.G., Cherdyntseva N.V. EXPRESSION of MACROPHAGe-ASSOCIATED GENES IN BREAST TUMORS: RELATION TO TUMOR PROGRESSION. Siberian journal of oncology. 2017;16(6):47-56. (In Russ.) https://doi.org/10.21294/1814-4861-2017-16-6-47-56