Preview

Siberian journal of oncology

Advanced search

THE ROLE OF AUTOPHAGY AND ANGIOGENESIS IN COLORECTAL CANCER

https://doi.org/10.21294/1814-4861-2017-16-6-86-92

Abstract

The purpose of the study was a review of available data on the role of autophagy and angiogenesis in the development, progression and prognosis of colorectal cancer. Material and methods. Databases searched were Medline, Cochrane Library and Elibrary. Of 340 studies, 48 were used to write a systematic review. Results. To date, there is a variety of prognostic markers used in the study of pathogenesis, diagnosis and treatment of colorectal cancer. The review describes the molecular mechanisms of the participation of various proteins of autophagy and angiogenesis in the pathogenesis and progression of colorectal cancer, and the potential importance of their use in clinical practice is presented. Conclusion. Many of the existing markers can be used not only in assessing the prognosis, but also sensitivity to chemotherapy. However, the contradictory results of studies with respect to certain proteins require further study, validation, and subsequent introduction into practice.

 

About the Authors

K. V. Rachkovsky
Siberian State Medical University, Tomsk
Russian Federation

Postgraduate, Department of Pathological Anatomy and Cytology

SPIN-code: 6814-7094



S. V. Vtorushin
Siberian State Medical University, Tomsk; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk
Russian Federation

MD, DSc, Professor, Pathological Anatomy Department, Siberian State Medical University; Senior Researcher of the Department of Pathological Anatomy and Cytology of Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Medical Sciences 

SPIN-code: 2442-4720



I. V. Stepanov
Siberian State Medical University, Tomsk; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk
Russian Federation

MD, PhD, Assistent Professor, Pathological Anatomy Department

SPIN-code: 5930-3160.

 



S. S. Naumov
Siberian State Medical University, Tomsk
Russian Federation
student


M. V. Zavyalova
Siberian State Medical University, Tomsk; Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk
Russian Federation

MD, DSc, Professor, Head of Pathological Anatomy Department, Siberian State Medical University; Senior Researcher of the Department of Pathological Anatomy and Cytology, Tomsk National Research Medical Center of the Russian Academy of Medical Sciences 

SPIN-code: 1229-0323



S. G. Afanasyev
Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk
Russian Federation

MD, DSc, Professor, Leading Researcher, Thoracic and Abdominal Department, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Medical Science

SPIN-code: 9206-3037



References

1. Tsimmerman Ya.S. Colorectal cancer. Russian Journal of Gastroenterology, Hepatology and Coloproctology. 2012; 4: 5–16. [in Russian]

2. Davydov М.I., Aksel Е.М. Statistics of malignant tumors in 2014. Eurasian Journal of Oncology. 2016; 4 (4): 692–879. [in Russian]

3. Kaprin А.D., Starinsky V.V., Petrova G.V. Cancer incidence and mortality in Russia in 2015. Мoscow: 2017, 250 p. [in Russian]

4. Imyanitov Е.N. Clonical and molecular aspects of colorectal cancer: pathogenesis, prevention and personalized treatment. Practical Oncology. 2005; 6 (2): 65–70. [in Russian]

5. Gil J., Pesz K.A., Sasiadek M.M. May autophagy be a novel bio-marker andantitumor target in colorectal cancer? Biomarkers in Medicine. 2016; 10 (10): 1081–1094. doi: 10.2217/bmm-2016-0083.

6. Rabinowitz J.D., White E. Autophagy and metabolism. Science. 2010; 330: 13441348. doi: 10.1126/science.1193497.

7. Degenhardt K., Mathew R., Beaudoin B., Bray K., Anderson D., Chen G., Mukherjee C., Shi Y., Gélinas C., Fan Y., Nelson D.A., Jin S., White E. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell. 2006 Jul; 10 (1): 51–64.

8. Burada F., Nicoli E.R., Ciurea M.E., Uscatu D.C., Ioana M., Gheonea D.I. Autophagy in colorectal cancer: An important switch from physiology to pathology. World J Gastrointest Oncol. 2015 Nov 15; 7 (11): 271–84. doi: 10.4251/wjgo.v7.i11.271.

9. Dunn W.A.Jr. Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol. 1994 Apr; 4 (4): 139–43.

10. Liu L., Meng T., Wang Q.S., Jin H.Z., Sun Z.Q., Jin B., Fang F., Wang H.J. Association of Beclin-1 and microRNA-30a expression with the severity and treatment response of colorectal cancer. Genet Mol Res. 2016 Apr 7; 15 (2). doi: 10.4238/gmr.15027704.

11. Jiang Z.F., Shao L.J., Wang W.M., Yan X.B., Liu R.Y. Decreased expression of Beclin-1 and LC3 in human lung cancer. Mol Biol Rep. 2012 Jan; 39 (1): 259–67. doi: 10.1007/s11033-011-0734-1.

12. Schmitz K.J., Ademi C., Bertram S., Schmid K.W., Baba H.A. Prognostic relevance of autophagy-related markers LC3, p62/sequesto-some 1, Beclin-1 and ULK1 in colorectal cancer patients with respect to KRAS mutational status. World J Surg Oncol. 2016 Jul 22; 14 (1): 189. doi: 10.1186/s12957-016-0946-x.

13. Chen Z., Li Y., Zhang C., Yi H., Wu C., Wang J., Liu Y., Tan J., Wen J. Downregulation of Beclin 1 and impairment of autophagy in a small population of colorectal cancer. Dig Dis Sci. 2013; 58: 2887–2894. doi: 10.1007/s10620-013-2732-8.

14. Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008 Jan 11; 132 (1): 27–42. doi: 10.1016/j.cell.2007.12.018.

15. Laddha S.V., Ganesan S., Chan C.S., White E. Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res. 2014; 12: 485–490. doi: 10.1158/1541-7786.MCR-13-0614.

16. Sahni S., Merlot A.M., Krishan S., Jansson P.J., Richardson D.R. Gene of the month: BECN1. J Clin Pathol. 2014 Aug; 67 (8): 656–60. doi: 10.1136/jclinpath-2014-202356.

17. Koukourakis M.I., Giatromanolaki A., Sivridis E., Pitiakoudis M., Gatter K.C., Harris A.L. Beclin 1 over- and underexpression in colorectal cancer: distinct patterns relate to prognosis and tumour hypoxia. Br J Cancer. 2010; 103: 1209–1214. doi: 10.1038/sj.bjc.6605904.

18. Wu S., Sun C., Tian D., Li Y., Gao X., He S., Li T. Expression and clinical significances of Beclin1, LC3 and mTOR in colorectal cancer. Int J Clin Exp Pathol. 2015; 8 (4): 3882–91. eCollection 2015.

19. Kundu M., Wang B. Canonical and noncanonical functions of ULK/Atg1. Curr Opin Cell Biol. 2017 Apr; 45: 47–54. doi: 10.1016/j. ceb.2017.02.011.

20. Amaravadi R., Kimmelman A.C., White E. Recent insights into the function of autophagy in cancer. Genes Dev. 2016 Sep 1; 30 (17): 1913–30. doi: 10.1101/gad.287524.116.

21. Jiang S., Li Y., Zhu Y.H., Wu X.Q., Tang J., Li Z., Feng G.K., Deng R., Li D.D., Luo R.Z., Zhang M.F., Qin W., Wang X., Jia W.H., Zhu X.F. Intensive expression of UNC-51-like kinase 1 is a novel biomarker of poor prognosis in patients with esophageal squamous cell carcinoma. Cancer Sci. 2011 Aug; 102 (8): 1568–75. doi: 10.1111/j.1349-7006.2011.01964.x.

22. Pike L.R., Singleton D.C., Buffa F., Abramczyk O., Phadwal K., Li J.L., Simon A.K., Murray J.T., Harris A.L. Transcriptional up-regulation of ULK1 by ATF4 contributes to cancer cell survival. Biochem J. 2013; 449: 389–400. doi: 10.1042/BJ20120972.

23. Tang J., Deng R., Luo R.Z., Shen G.P., Cai M.Y., Du Z.M., Jiang S., Yang M.T., Fu J.H., Zhu X.F. Low expression of ULK1 is associated with operable breast cancer progression and is an adverse prognostic marker of survival for patients. Breast Cancer Res Treat. 2012; 134: 549–60. doi: 10.1007/s10549-012-2080-y.

24. Gao C., Cao W., Bao L., Zuo W., Xie G., Cai T., Fu W., Zhang J., Wu W., Zhang X., Chen Y.G. Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nature Cell Biology. 2010; 12 (8): 781–90. doi: 10.1038/ncb2082.

25. Linares J.F., Amanchy R., Greis K., Diaz-Meco M.T., Moscat J. Phosphorylation of p62 by cdk1 controls the timely transit of cells through mitosis and tumor cell proliferation. Mol Cell Biol. 2011; 31 (1): 105–117. doi: 10.1128/mcb.00620-10.

26. Jeong W.J., Cha P.H., Choi K.Y. Strategies to overcome resistance to epidermal growth factor receptor monoclonal antibody therapy in metastatic colorectal cancer. World J Gastroenterol. 2014 Aug 7; 20 (29): 9862–71. doi: 10.3748/wjg.v20.i29.9862.

27. Chen Z., Gao S., Wang D., Song D., Feng Y. Colorectal cancer cells are resistant to anti-EGFR monoclonal antibody through adapted autophagy. Am J Transpl Res. 2016; 8 (2): 1190–6. eCollection 2016.

28. Mei Q., Li F., Quan H., Liu Y., Xu H. Busulfan inhibits growth of human osteosarcoma through miR-200 family microRNAs in vitro and in vivo. Cancer Sci. 2014; 105: 755–762. doi: 10.1111/cas.12436.

29. Liu G., Jiang C., Li D., Wang R., Wang W. MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumour Biol. 2014 Oct; 35 (10): 9801–6. doi: 10.1007/s13277-014-2273-6.

30. Zhu H., Wu H., Liu X., Li B., Chen Y., Ren X., Liu C.G., Yang J.M. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells. Autophagy. 2009; 5 (6): 816–823.

31. Minder P., Zajac E., Quigley J.P., Deryugina E.I. EGFR Regulates the Development and Microarchitecture of Intratumoral Angiogenic Vasculature Capable of Sustaining Cancer Cell Intravasation. Neoplasia. 2015; 17 (8): 634–49 doi: 10.1016/j.neo.2015.08.002.

32. Mousa L., Salem M.E., Mikhail S. Biomarkers of Angiogenesis in Colorectal Cancer. Biomarkers in cancer. 2015; 7 (suppl 1): 13–19. doi:10.4137/BIC.S25250.

33. Jain R.K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005; 307 (5706): 58–62. doi: 10.1126/science.1104819.

34. Brown L.F., Berse B., Jackman R.W., Tognazzi K., Manseau E.J., Senger D.R., Dvorak H.F. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res. 1993; 53(19): 4727–4735.

35. Jantus-Lewintre E., Sanmartín E., Sirera R., Blasco A., Sanchez J.J., Taron M., Rosell R., Camps C. Combined VEGF-A and VEGFR-2 concentrations in plasma: diagnostic and prognostic implications in patients with advanced NSCLC. Lung Cancer. 2011 Nov; 74 (2): 326–31. doi: 10.1016/j.lungcan.2011.02.016.

36. Zhang S.D., McCrudden C.M., Meng C., Lin Y., Kwok H.F. The significance of combining VEGFA, FLT1, and KDR expressions in colon cancer patient prognosis and predicting response to bevacizumab. Onco Targets Ther. 2015; 8: 835–843. doi: 10.2147/OTT.S80518.

37. Stiegelbauer V., Perakis S., Deutsch A., Ling H., Gerger A., Pichler M. MicroRNAs as novel predictive biomarkers and therapeutic targets in colorectal cancer. World J Gastroenterol. 2014; 20 (33): 11727–11735. doi: 10.3748/wjg.v20.i33.11727.

38. Hansen T.F., Christensen R.D., Andersen R.F., Sørensen F.B., Johnsson A., Jakobsen A. MicroRNA-126 and epidermal growth factor-like domain 7-an angiogenic couple of importance in metastatic colorectal cancer. Results from the Nordic ACT trial. Br J Cancer. 2013; 109 (5): 1243–51. doi: 10.1038/bjc.2013.448.

39. Pietrzyk L. Biomarkers Discovery for Colorectal Cancer: A Review on Tumor Endothelial Markers as Perspective Candidates. Disease Markers. 2016; 2016: 1–11. doi: 10.1155/2016/4912405.

40. St Croix B., Rago C., Velculescu V., Traverso G., Romans K.E., Montgomery E., Lal A., Riggins G.J., Lengauer C., Vogelstein B., Kinzler K.W. Genes expressed in human tumor endothelium. Science. 2000; 289: 1197–1202. doi: 10.1126/science.289.5482.1197.

41. Mehran R., Nilsson M., Khajavi M., Du Z., Cascone T., Wu H.K., Cortes A., Xu L., Zurita A., Schier R., Riedel B., El-Zein R., Heymach J.V. Tumor endothelialmarkers define novel subsets of cancer-specific circulating endothelial cells associated with antitumor efficacy. Cancer Res. 2014; 74 (10): 2731–41. doi: 10.1158/0008-5472.CAN-13-2044.

42. Carson-Walter E.B., Watkins D.N., Nanda A., Vogelstein B., Kinzler K.W., St Croix B. Cell surface tumor endothelial markers are conserved in mice and humans. Cancer Res. 2001; 61 (18): 6649–55.

43. Rmali K.A., Puntis M.C.A., Jiang W.G. Prognostic values of tumor endothelial markers in patients with colorectal cancer. World J Gastroenterol. 2005 Mar 7; 11(9): 1283–6.

44. Tomkowicz B., Rybinski K., Foley B., Ebel W., Kline B., Routhier E., Sass P., Nicolaides N.C., Grasso L., Zhou Y. Interaction of endosialin/ TEM1 with extracellular matrix proteins mediates cell adhesion and migration. Proc Natl Acad Sci USA. 2007; 104 (46): 17965–70. doi: 10.1073/ pnas.0705647104.

45. Davies G., Cunnick G.H., Mansel R.E., Mason M.D., Jiang W.G. Levels of expression of endothelial markers specific to tumour-associated endothelial cells and their correlation with prognosis in patients with breast cancer. Clin Exp Metastasis. 2004; 21 (1): 31–37. doi: 10.1023/ B:CLIN.0000017168.83616.d.

46. Dolznig H., Schweifer N., Puri C., Kraut N., Retting W.J., Kerjaschki D., Garin-Chesa P. Characterization of cancer stroma markers: In silico analysis of an mRNA expression database for fibroblast activation protein and endosialin. Cancer Imm. 2005; 5: 10.

47. Brady J., Neal J., Sadakar N., Gasque P. Human endosialin (tumor endothelial marker 1) is abundantly expressed in highly malignant and invasive brain tumors. J Neuropathol Exp Neurol. 2004; 63 (12): 1274–1283. doi: 10.1093/jnen/63.12.1274.

48. Huber M.A., Kraut N., Schweifer N., Dolznig H., Peter R.U., Schubert R.D., Scharffetter-Kochanek K., Pehamberger H., Garin-Chesa P. Expression of stromal cell markers in distinct compartments of human skin cancers. J Cutan Pathol. 2006; 33 (2): 145–155. doi:10.1111/j.0303-6987.2006.00446.x.


Review

For citations:


Rachkovsky K.V., Vtorushin S.V., Stepanov I.V., Naumov S.S., Zavyalova M.V., Afanasyev S.G. THE ROLE OF AUTOPHAGY AND ANGIOGENESIS IN COLORECTAL CANCER. Siberian journal of oncology. 2017;16(6):86-92. (In Russ.) https://doi.org/10.21294/1814-4861-2017-16-6-86-92

Views: 968


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)