Preview

Siberian journal of oncology

Advanced search

FEASIBILITY OF USING COLD ATMOSPHERIC PLASMA IN THE TREATMENT OF CANCER PATIENTS (LITERATURE REVIEW)

https://doi.org/10.21294/1814-4861-2018-17-1-72-81

Abstract

Radiation and photodynamic therapy used in anti-cancer therapy generate only active forms of oxygen. High NO concentrations has been shown to induce apoptosis of tumor cells, suggesting that nitrogen-dependent stress can be one of the decisive factors in anti-cancer therapy. Cold atmospheric plasma (CAP) is a highly reactive ionized physical state that causes various biological effects. The processes of ionization, dissociation, excitation and recombination of atoms and molecules in CAP lead to the formation of a large number of active forms of oxygen and nitrogen. This review presents the results of studies revealing the mechanism of the antitumor effect of CAP, its effect on various tumor cell lines, and the treatment outcomes in animal models. Further studies on using CAP in cancer therapy are required.

About the Author

V. N. Korotky
N.I. Pirogov Russian National Research Medical Center
Russian Federation

Vladimir N. Korotky, MD, PhD, Department of Dermatology and Venerology.

1, Ostrovityaninova Str., 117997-Moscow


References

1. Gorrini C., Harris I.S., Mak T.W. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013 Dec; 12 (12): 931–47. doi: 10.1038/nrd4002.

2. Fridman A. Plasma Chemistry. Cambridge University Press: Cambridge, 2008. 979.

3. Fridman G., Friedman G., Gutsol A., Shekhter A.B., Vasilets V.N., Fridman A. Applied plasma medicine. Plasma Process Polym. 2008; 5: 503–533.

4. Korotky V.N. Cold atmospheric plasma in dermatology. Clinical dermatology and venerology. 2017; 16 (5): 4–11 doi: 10.17116/klinderma20171654-10. [in Russian]

5. Waskoenig J., Niemi, K., Knake N., Graham L.M., Reuter S., SchulzVon Der Gathen V., Gans T. Atomic oxygen formation in a radiofrequency driven micro-atmospheric pressure plasma jet. Plasma Sources Sci Technol. 2010; 19 (4): 045018.

6. Niemi K., O’Connell D., De Oliveira N., Joyeux D., Nahon L., Booth J.P., Gans T. Absolute atomic oxygen and nitrogen densities in radiofrequency driven atmospheric pressure cold plasmas: synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements. Appl Phys Lett. 2013; 103 (3): 034102.

7. Xu D., Liu D., Wang B., Chen C., Chen Z., Li D., Yang Y., Chen H., Kong M.G. In situ OH generation from O2- and H2O2 plays a critical role in plasma-induced cell death. PLoS One. 2015; 10 (6): e0128205.

8. Kang S.U., Cho J.H., Chang J.W., Shin Y.S., Kim K.I., Park J.K., Yang S.S., Lee J.S., Moon E., Lee K., Kim C.H. Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogenactivated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death Dis. 2014 Feb 13; 5: e1056. doi: 10.1038/cddis.2014.33.

9. Sousa J.S., Niemi K., Cox L.J., Algwari Q.T., Gans T., O’Connell D. Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications. J Appl Phys. 2011; 109 (12): 123302–8.

10. Hirst A.M., Simms M.S., Mann V.M., Maitland N.J., O’Connell D., Frame F.M. Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells. Br J Cancer. 2015 Apr 28; 112 (9): 1536–45. doi: 10.1038/bjc.2015.113.

11. Wagenaars E., Gans T., O’Connell D., Niemi K. Two-photon absorption laser-induced fluorescence measurements of atomic nitrogen in a radio-frequency atmospheric-pressure plasma jet. Plasma Sources Sci Technol, 2012; 21 (4): 042002.

12. Ma Y., Ha C.S., Hwang S.W., Lee H.J., Kim G.C., Lee K.W., Song K. Nonthermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ROS stress-response pathways. PLoS One. 2014 Apr 23; 9 (4): e91947. doi: 10.1371/journal.pone.0091947.

13. Lukes P., Dolezalova E., Sisrova I., Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudosecond-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci Technol. 2014; 23 (1): 015019.

14. Hirst D., Robson T. Targeting nitric oxide for cancer therapy. J Pharm Pharmacol. 2007; 59 (1): 3–13.

15. Klaunig J.E., Kamendulis L.M. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol. 2004; 44: 239–67.

16. Pelicano H., Carney D., Huang P. ROS stress in cancer cells and therapeutic implications. Drug Resist Updat. 2004; 7 (2): 97–110.

17. Tovmasyan A., Maia C.G., Weitner T., Carballal S., Sampaio R.S., Lieb D., Ghazaryan R., Ivanovic-Burmazovic I., Ferrer-Sueta G., Radi R., Reboucas J.S., Spasojevic I., Benov L., Batinic-Haberle I. A comprehensive evaluation of catalase-like activity of different classes of redox-active therapeutics. Free Radic Biol Med. 2015; 86: 308–21. doi: 10.1016/j.freeradbiomed.2015.05.018.

18. Trachootham D., Alexandre J., Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov. 2009 Jul; 8 (7): 579–91. doi: 10.1038/nrd2803.

19. Yoshida T., Goto S., Kawakatsu M., Urata Y., Li T.S. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation. Free Radic Res. 2012; 46 (2): 147–53. doi: 10.3109/10715762.2011.645207.

20. Sangeetha P., Das U.N., Koratkar R., Suryaprabha P. Increase in free radical generation and lipid peroxidation following chemotherapy in patients with cancer. Free Radic Biol Med. 1990; 8 (1): 15–9.

21. Conklin K.A. Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther. 2004; 3 (4): 294–300.

22. Graves D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys. 2012; 45 (26): 263001.

23. Murakami T., Niemi K., Gans T., O’Connell D., Graham W.G. Chemical kinetics and reactive species in atmospheric pressure heliumoxygen plasmas with humid-air impurities. Plasma Sources Sci Technol. 2013; 22 (1): 015003.

24. Hirst A.M., Frame F.M., Arya M., Maitland N.J., O’Connell D. Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumor Biol. 2016; 37: 7021–31. doi: 10.1007/s13277-016-4911-7.

25. Babaeva N.Y., Kushner M.J. Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin. J Phys D Appl Phys. 2013; 46 (2): 025401.

26. Chen C., Liu D.X., Liu Z.C., Yang A.J., Chen H.L., Shama G., Kong M.G. A model of plasma-biofilm and plasma-tissue interactions at ambient pressure. Plasma Chem Plasma Process. 2014; 34 (3): 403–41.

27. Van Gaens W., Iseni S., Schmidt-Bleker A., Weltmann K., Reuter S., Bogaerts A. Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure. New J Phys. 2015; 17 (3): 033003.

28. Kaushik N., Kumar N., Kim C.H., Kaushik N.K., Choi E.H. Dielectric barrier discharge plasma efficiently delivers an apoptotic response in human monocytic lymphoma. Plasma Process Polym. 2014; 11 (12): 1175–87.

29. Wang M., Holmes B., Cheng X., Zhu W., Keidar M., Zhang L.G. Cold atmospheric plasma for selectively ablating metastatic breast cancer cells. PLoS One. 2013; 8: e73741.

30. Iseki S., Nakamura K., Hayashi M., Tanaka H., Kondo H., Kajiyama H., Hori M. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl Phys Lett. 2012; 100: 113702.

31. Kim C.H., Kwon S., Bahn J.H., Lee K., Jun S.I., Rack P.D., Baek S.J. Effects of atmospheric nonthermal plasma on invasion of colorectal cancer cells. Appl Phys Lett. 2010; 96 (24): 243701.

32. Joh H.M., Choi J.Y., Kim S.J., Chung T.H., Kang T.-H. Effect of additive oxygen gas on cellular response of lung cancer cells induced by atmospheric pressure helium plasma jet. Sci Rep. 2014; 4: 6638.

33. Gweon B., Kim M., Bee Kim D., Kim D., Kim H., Jung H., Choe W. Differential responses of human liver cancer and normal cells to atmospheric pressure plasma. Appl Phys Lett. 2011; 99: 063701.

34. Kim J.Y., Ballato J., Foy P., Hawkins T., Wei Y., Li J., Kim S.O. Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma. Biosens Bioelectron. 2011 Oct 15; 28 (1): 333–8. doi: 10.1016/j.bios.2011.07.039.

35. Partecke L.I., Evert K., Haugk J., Doering F., Normann L., Diedrich S., Weiss F.U., Evert M., Huebner N.O., Guenther C., Heidecke C.D., Kramer A., Bussiahn R., Weltmann K.D., Pati O., Bender C., von Bernstorff W. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC Cancer, 2012; 12: 473. doi: 10.1186/1471-2407-12-473.

36. Guerrero-Preston R., Ogawa T., Uemura M., Shumulinsky G., Valle B.L., Pirini F., Ravi R., Sidransky D., Keidar M., Trink B. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int J Mol Med. 2014 Oct; 34 (4): 941–6. doi: 10.3892/ijmm.2014.1849.

37. Gibson A.R., McCarthy H.O., Ali A., O’Connell D., Graham W.G. Interactions of a non-thermal atmospheric pressure plasma effluent with PC-3 prostate cancer cells. Plasma Process Polym. 2014; 11: 1142–9.

38. Weiss M., Gümbel D., Hanschmann E.M., Mandelkow R., Gelbrich N., Zimmermann U., Walther R., Ekkernkamp A., Sckell A., Kramer A., Burchardt M., Lillig C.H., Stope M.B. Cold atmospheric plasma treatment induces anti-proliferative effects in prostate cancer cells by redox and apoptotic signaling pathways. PLoS One. 2015 Jul 1; 10 (7): e0130350. doi: 10.1371/journal.pone.0130350.

39. Conway G.E., Casey A., Milosavljevic V., Liu Y., Howe O., Cullen P.J., Curtin J.F. Non-thermal atmospheric plasma induces ROSindependent cell death in U373MG glioma cells and augments the cytotoxicity of temozolomide. Br J Cancer. 2016 Feb 16; 114 (4): 435–43. doi: 10.1038/bjc.2016.12.

40. Vandamme M., Robert E., Pesnel S., Barbosa E., Dozias S., Sobilo J., Pouvesle J.M. Antitumor effect of plasma treatment on U87 glioma xenografts: preliminary results. Plasma Process Polym. 2010; 7: 264–73.

41. Köritzer J., Boxhammer V., Schäfer A., Shimizu T., Klämpfl T.G., Li Y.F., Welz C., Schwenk-Zieger S., Morfill G.E., Zimmermann J.L., Schlegel J. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma. PLoS One. 2013 May 21; 8 (5): e64498. doi:10.1371/journal.pone.0064498.

42. Cheng X., Murphy W., Recek N., Yan D., Cvelbar U., Vesel A., Sherman J.H. Synergistic effect of gold nanoparticles and cold plasma on glioblastoma cancer therapy. J Phys D Appl Phys. 2014; 47: 335402.

43. Cheng X., Sherman J., Murphy W., Ratovitski E., Canady J., Keidar M. The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS One. 2014 May 30; 9 (5): e98652. doi: 10.1371/journal.pone.0098652.

44. Siu A., Volotskova O., Cheng X., Khalsa S.S., Bian K., Murad F., Keidar M., Sherman J.H. Differential effects of cold atmospheric plasma in the treatment of malignant glioma. PLoS One. 2015 Jun 17; 10 (6): e0126313. doi: 10.1371/journal.pone.0126313.

45. Walk R.M., Snyder J.A., Srinivasan P., Kirsch J., Diaz S.O., Blanco F.C., Shashurin A., Keidar M., Sandler A.D. Cold atmospheric plasma for the ablative treatment of neuroblastoma. J Pediatr Surg. 2013 Jan; 48 (1): 67–73. doi: 10.1016/j.jpedsurg.2012.10.020.

46. Hirst A.M., Frame F.M., Maitland N.J., O’Connell D. Low temperature plasma causes double-strand break DNA damage in primary epithelial cells cultured from a human prostate tumor. IEEE Trans Plasma Sci. 2014; 42 (10): 2740–1.

47. Ishaq M., Evans M.D., Ostrikov K.K. Atmospheric pressure gas plasma-induced colorectal cancer cell death is mediated by Nox2-ASK1 apoptosis pathways and oxidative stress is mitigated by Srx-Nrf2 antioxidant system. Biochim Biophys Acta. 2014 Dec; 1843 (12): 2827–37. doi: 10.1016/j.bbamcr.2014.08.011.

48. Vandamme M., Robert E., Lerondel S., Sarron V., Ries D., Dozias S., Sobilo J., Gosset D., Kieda C., Legrain B., Pouvesle J.M., Pape A.L. ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer. 2012; 130 (9): 2185–94. doi: 10.1002/ijc.26252.

49. Arndt S., Wacker E., Li Y.F., Shimizu T., Thomas H.M., Morfill G.E., Karrer S., Zimmermann J.L., Bosserhoff A.K. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol. 2013 Apr; 22 (4): 284–9. doi: 10.1111/exd.12127.

50. Han X., Klas M., Liu Y., Stack M.S., Ptasinska S. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets. Appl Phys Lett. 2013; 102 (23): 233703.

51. Wende K., Williams P., Dalluge J., Gaens W.V., Aboubakr H., Bischof J., von Woedtke T., Goyal S.M., Weltmann K.D., Bogaerts A., Masur K., Bruggeman P.J. Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet. Biointerphases, 2015; 10 (2): 029518.

52. Guerrero-Preston R., Ogawa T., Uemura M., Shumulinsky G., Valle B.L., Pirini F., Ravi R., Sidransky D., Keidar M., Trink B. Cold atmospheric plasma treatment selectively targets head and neck squamous cell carcinoma cells. Int J Mol Med. 2014 Oct; 34 (4): 941–6. doi: 10.3892/ijmm.2014.1849.

53. Nakai N., Fujita R., Kawano F., Takahashi K., Ohira T., Shibaguchi T., Nakata K., Ohira Y. Retardation of C2C12 myoblast cell proliferation by exposure to low-temperature atmospheric plasma. J Physiol Sci. 2014 Sep; 64 (5): 365–75. doi: 10.1007/s12576-014-0328-5.

54. Chang J.W., Kang S.U., Shin Y.S., Kim K.I., Seo S.J., Yang S.S., Lee J.S., Moon E., Baek S.J., Lee K., Kim C.H. Non-thermal atmospheric pressure plasma induces apoptosis in oral cavity squamous cell carcinoma: Involvement of DNA-damage-triggering sub-G(1) arrest via the ATM/p53 pathway. Arch Biochem Biophys. 2014 Mar 1; 545: 133–40. doi: 10.1016/j.abb.2014.01.022.

55. Arndt S., Wacker E., Li Y.F., Shimizu T., Thomas H.M., Morfill G.E., Karrer S., Zimmermann J.L., Bosserhoff A.K. Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp Dermatol. 2013 Apr; 22 (4): 284–9. doi: 10.1111/exd.12127.

56. Jenkins D.E., Oei Y., Hornig Y.S., Yu S.F., Dusich J., Purchio T., Contag P.R. Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis, 2003; 20 (8): 733–44.

57. Wachsberger P., Burd R., Dicker A.P. Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res. 2003 Jun; 9 (6): 1957–71.

58. Fridman G., Shereshevsky A., Jost M.M., Brooks A.D., Fridman A., Gutsol A., Friedman G. Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines. Plasma Chemistry and Plasma Processing. 2007; 27 (2): 163–176.

59. Lee H., Shon C., Kim Y., Kim S., Kim G., Kong M. Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma. New J Phys. 2009; 11: 115026.

60. Kim G.C., Lee H.J., Shon C.H. The effects of micro-plasma on melanoma (G361) cancer cells. J Korean Phys Soc. 2009; 54: 625–32.

61. Zirnheld J., Zucker S., DiSanto T., Berezney R., Etemadi K. NonThermal Plasma Needle: Development and Targeting of Melanoma Cells. IEEE Trans Plasma Sci. 2010; 38: 948–52.

62. Georgescu N., Lupu A. Tumoral and Normal Cells Treatment With High-Voltage Pulsed Cold Atmospheric Plasma Jets. IEEE Trans Plasma Sci. 2010; 38 (8): 1949–55.

63. Sensenig R., Kalghatgi S., Cerchar E., Fridman G., Shereshevsky A., Torabi B., Azizkhan-Clifford J. Retracted article: Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann Biomed Eng. 2011; 39 (2): 674–687. doi: 10.1007/s10439-010-0197-x.

64. Zucker S.N., Zirnheld J., Bagati A., DiSanto T.M., Des Soye B., Wawrzyniak J.A., Etemadi K., Nikiforov M., Berezney R. Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch. Cancer Biol Ther. 2012 Nov; 13 (13): 1299–306. doi: 10.4161/cbt.21787.

65. Ishaq M., Kumar S., Varinli H., Han Z., Rider A., Evans M., Murphy A., Ostrikov K. Atmospheric gas plasma–induced ROS production activates TNF-ASK1 pathway for the induction of melanoma cancer cell apoptosis. Mol Biol Cell. 2014 May; 25 (9): 1523–31. doi: 10.1091/mbc.E13-10-0590.

66. Tuhvatulin A.I., Sysolyatina E.V., Scheblyakov D.V., Logunov D.Y., Vasiliev M.M., Yurova M.A., Danilova M.A., Petrov O.F., Naroditsky B.S., Morfill G.E., Grigoriev A.I., Fortov V.E., Gintsburg A.L., Ermolaeva S.A. Non-thermal Plasma Causes p53-Dependent Apoptosis in Human Colon Carcinoma Cells. Acta Naturae. 2012; 4 (3): 82–7.

67. Yan X., Zou F., Zhao S., Lu X., He G., Xiong Z., Yang G. On the Mechanism of Plasma Inducing Cell Apoptosis. IEEE Transact Plasma Sci. 2010; 38 (9): 2451–7.

68. Volotskova O., Hawley T.S., Stepp M.A., Keidar M. Targeting the cancer cell cycle by cold atmospheric plasma. Sci Rep. 2012; 2: 636.

69. Ahn H.J., Kim K.I., Kim G., Moon E., Yang S.S., Lee J.S. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS One. 2011; 6 (11): e28154.

70. Kim G.J., Kim W., Kim K.T., Lee J.K. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma. Appl Phys Lett. 2010; 96: 021502.

71. Panngom K., Baik K.Y., Nam M.K., Han J.H., Rhim H., Choi E.H. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma. Cell Death Dis. 2013; 4: e642.

72. Yan X., Xiong Z., Zou F., Zhao S., Lu X., Yang G., Ostrikov K.K. Plasma-Induced Death of HepG2 Cancer Cells: Intracellular Effects of Reactive Species. Plasma Proc Polymers. 2012; 9 (1): 59–66.

73. Hanschmann E.M., Lönn M.E., Schütte L.D., Funke M., Godoy J.R., Eitner S., Hudemann C., Lillig C.H. Both thioredoxin 2 and glutaredoxin 2 contribute to the reduction of the mitochondrial 2-Cys peroxiredoxin Prx3. J Biol Chem. 2010; 285 (52): 40699–705. doi: 10.1074/jbc.M110.185827.

74. Kalghatgi S., Kelly C.M., Cerchar E., Torabi B., Alekseev O., Fridman A., Friedman G., Azizkhan-Clifford J. Effects of non-thermal plasma on mammalian cells. PLoS One. 2011; 6 (1): e16270.

75. Köritzer J., Boxhammer V., Schäfer A., Shimizu T., Klämpfl T.G., Li Y.F., Welz C., Schwenk-Zieger S., Morfill G.E., Zimmermann J.L., Schlegel J. Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma. PLoS One. 2013; 8 (5): e64498.

76. Kim J.Y., Kim S.O., Wei Y., Li J. A flexible cold microplasma jet using biocompatible dielectric tubes for cancer therapy. Appl Phys Lett. 2010; 96 (20): 203701.

77. Bekeschus S., Kolata J., Winterbourn C., Kramer A., Turner R., Weltmann K.D., Masur K. Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radic Res. 2014; 48 (5): 542–9. doi: 10.3109/10715762.2014.892937.

78. Tanaka H., Mizuno M., Ishikawa K., Nakamura K., Kajiyama H., Kano H., Hori M. Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase. Plasma Med. 2011; 1 (3–4): 265–77.

79. Yan D., Sherman J.H., Cheng X., Ratovitski E., Canady J., Keidar M. Controlling plasma stimulated media in cancer treatment application. Appl Phys Lett. 2014; 105 (22): 224101.

80. Yan D., Sherman J.H., Cheng X., Ratovitski E., Canady J., Keidar M. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects. Sci Rep. 2016; 6: 36282.

81. Yan D., Cui H., Zhu W., Nourmohammadi N., Milberg J., Zhang L.G., Sherman J.H., Keidar M. The Specific Vulnerabilities of Cancer Cells to the Cold Atmospheric Plasma-Stimulated Solutions. Sci Rep. 2017; 7: 4479.

82. Gümbel D., Daeschlein G., Ekkernkamp A., Kramer A., Stope M.B. Cold atmospheric plasma in orthopaedic and urologic tumor therapy. GMS Hyg Infect Control. 2017 Aug 8; 12: Doc10. doi: 10.3205/dgkh000295.

83. Reiazi R., Akbari M.E., Norozi A., Etedadialiabadi M. Application of cold atmospheric plasma (CAP) in cancer therapy: a review. Int J Cancer Manag. 2017; 10 (3): e8728.


Review

For citations:


Korotky V.N. FEASIBILITY OF USING COLD ATMOSPHERIC PLASMA IN THE TREATMENT OF CANCER PATIENTS (LITERATURE REVIEW). Siberian journal of oncology. 2018;17(1):72-81. (In Russ.) https://doi.org/10.21294/1814-4861-2018-17-1-72-81

Views: 1261


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)