Antibodies and anti-antibodies specific to estradiol and progesterone and tumor proliferation in breast cancer patients
https://doi.org/10.21294/1814-4861-2024-23-3-73-85
Abstract
The study was aimed to determine the interrelations between levels of serum antibodies specific to estradiol and progesterone (IgA1-E2 and IgA1-Pg) and corresponding antiidiotypic antibodies (IgG2-E2 and IgG2-Pg) and tumor Ki67 positive cells in breast cancer patients (BCP). Material and Methods. The content of these antibodies in the blood serum of BCP (522 at the I stage and 578 at the II –IV stages) was studied using non-competitive enzyme immunoassay. Ki67 was determined using immunohistochemical method. Statistical analysis of the results was performed using the Statistica 8.0 software. Results. There were no revealed the desired associations in BCP I stage. Tumors with high levels of Ki67 positive cells (>20,0 %) were found more often in BCP II –IV stages with high serum levels of IgA1-E2 together with IgA1-Pg than in BCP with low levels of these antibodies (68.8 vs 58.0 %, р=0.02). In contrast, tumors with Ki67>20,0 % were revealed less often in BCP with high levels of IgG2-E2 together with IgG2-Pg (49.6 vs 65.2 %, р=0.002). Tumors with high levels of Ki67 positive cells were revealed in 42.9 % BCP I stage and in 77.1 % BCP II –IV stages with high serum levels of IgA1-E2 and IgA1-Pg in combination with low serum levels of IgG2-E2 and IgG2-Pg (p<0.001). There were no such differences between BCP I and II -IV stages with low levels of IgA1-E2 and IgA1-Pg in combination with high levels of IgG2-E2 and IgG2-Pg (46.7 vs 48.2 %, accordingly, р=0.985). Conclusion. Antibodies against E2 and Pg synergistically promoted, but corresponding antiidiotypic antibodies synergistically inhibited the tumors proliferation in BCP. Immunoassay of antibodies and anti-antibodies to steroids is recommended for research of human hormone-dependent neoplasms progression.
About the Authors
A. N. GlushkovRussian Federation
Andrey N. Glushkov, MD, Professor, Chief Researcher, Immunogenetics Laboratory
Author ID (Scopus): 7006323832. Researcher ID (WOS): Q-5985-2016
10, Leningradsky Ave., Kemerovo, 650065, Russia
E. G. Polenok
Russian Federation
Elena G. Polenok, PhD, Leading Researcher, Immunochemistry Laboratory,
Author ID (Scopus): 6506567994. Researcher ID (WOS): Q-5381-2016
10, Leningradsky Ave., Kemerovo, 650065, Russia
L. A. Gordeeva
Russian Federation
Lyudmila A. Gordeeva, PhD, Leading Researcher, Immunogenetics Laboratory,
Author ID (Scopus): 14052058500. Researcher ID (WOS): R-2781-2016
10, Leningradsky Ave., Kemerovo, 650065, Russia
P. V. Bayramov
Russian Federation
Pavel V. Bayramov, Head of the Pathological Department
35, Volgogradskaya St., Kemerovo, 650036, Russia
N. E. Verzhbitskaya
Russian Federation
Natalia E. Verzhbitskaya, MD, PhD, Pathologist, Pathological Department
35, Volgogradskaya St., Kemerovo, 650036, Russia
A. V. Antonov
Russian Federation
Alexander V. Antonov, Head of the Department of Breast Cancer
35, Volgogradskaya St., Kemerovo, 650036, Russia
G. I. Kolpinsky
Russian Federation
Gleb I. Kolpinsky, MD, Professor, Department of Radiation Diagnostics and Radiation Therapy with a Course in Oncology; Chief Physician
Author ID (Scopus): 56677706300
53/1, Oktyabrsky Ave., Kemerovo, 650066, Russia
6, Krasnaya St., Kemerovo, 650000, Russia
M. V. Kostyanko
Russian Federation
Mikhail V. Kostyanko, Leading Engineer, Department of Fundamental and Applied Chemistry
Author ID (Scopus): 6507008191
6, Krasnaya St., Kemerovo, 650000, Russia
References
1. Merabishvili V.M., Semiglazov V.F., Komiakhov A.V., Semiglazova T.Yu., Krivorotko P.V., Belyaev А.M. The state of cancer care in Russia: breast cancer. Epidemiology and survival of patients. The impact of the SARS-CoV-2-beta-coronavirus epidemic (clinical and population study). Tumors of Female Reproductive System. 2023; 19(3): 16–24. (in Russian). doi: 10.17650/1994-4098-2023-19-3-16-24.
2. Nielsen T.O., Leung S.C.Y., Rimm D.L., Dodson A., Acs B., Badve S., Denkert C., Ellis M.J., Fineberg S., Flowers M., Kreipe H.H., Laenkholm A.V., Pan H., Penault-Llorca F.M., Polley M.Y., Salgado R., Smith I.E., Sugie T., Bartlett J.M.S., McShane L.M., Dowsett M., Hayes D.F. Assessment of Ki67 in Breast Cancer: Updated Recommendations From the International Ki67 in Breast Cancer Working Group. J Natl Cancer Inst. 2021; 113(7): 808–19. doi: 10.1093/jnci/djaa201.
3. Hacking S.M., Wang Y. Practical Issues of Ki67 Evaluation in Breast Cancer Clinical Practice. J Clin Transl Pathol. 2022; 2(2): 53–6. doi: 10.14218/jctp.2022.00012.
4. Fortunati N., Catalano M.G., Boccuzzi G., Frairia R. Sex Hormone-Binding Globulin (SHBG), estradiol and breast cancer. Mol Cell Endocrinol. 2010; 316(1): 86–92. doi: 10.1016/j.mce.2009.09.012.
5. Dimou N.L., Papadimitriou N., Gill D., Christakoudi S., Murphy N., Gunter M.J., Travis R.C., Key T.J., Fortner R.T., Haycock P.C., Lewis S.J., Muir K., Martin R.M., Tsilidis K.K. Sex hormone binding globulin and risk of breast cancer: a Mendelian randomization study. Int J Epidemiol. 2019; 48(3): 807–16. doi: 10.1093/ije/dyz107.
6. Elsaesser F. Effects of active immunization against oestradiol-17 beta, testosterone or progesterone on receptivity in the female rabbit and evaluation of specificity. J Reprod Fertil. 1980; 58(1): 213–8. doi: 10.1530/jrf.0.0580213.
7. Rosenberg M., Amir D., Folman Y. The effect of active immunization against progesterone on plasma concentrations of total and free progesterone, estradiol-17beta and LH in the cyclic ewe. Theriogenology. 1987; 28(4): 417–26. doi: 10.1016/0093-691x(87)90246-9.
8. Bochskanl R., Thie M., Kirchner C. Active immunization of rabbits against progesterone: increase in hormone levels, and changes in metabolic clearance rates and in genital tract tissues. J Steroid Biochem. 1989; 33(3): 349–55. doi: 10.1016/0022-4731(89)90323-3.
9. Caldwell B.V., Tillson S.A., Esber H., Thorneycroft I.H. Survival of tumours after immunization against oestrogens. Nature. 1971; 231(5298): 118–9. doi: 10.1038/231118a0.
10. Averianov A.V., Antonov A.V., Zhivotovsky A.S., Kostyanko M.V., Vafin I.A., Kolpinskiy G.I. Class G antibodies specific for benzo[a]pyrene, estradiol and progesterone in women with colorectal cancer. Siberian Journal of Oncology. 2022; 21(5): 52–8. (in Russian). doi: 10.21294/1814-4861-2022-21-5-52-58.
11. Norfleet A.M., Clarke C.H., Gametchu B., Watson C.S. Antibodies to the estrogen receptor-alpha modulate rapid prolactin release from rat pituitary tumor cells through plasma membrane estrogen receptors. FASEB J. 2000; 14(1): 157–65. doi: 10.1096/fasebj.14.1.157.
12. Luconi M., Francavilla F., Porazzi I., Macerola B., Forti G., Baldi E. Human spermatozoa as a model for studying membrane receptors mediating rapid nongenomic effects of progesterone and estrogens. Steroids. 2004; 69(8–9): 553–9. doi: 10.1016/j.steroids.2004.05.013.
13. Modi D.N., Shah C., Puri C.P. Non-genomic membrane progesterone receptors on human spermatozoa. Soc Reprod Fertil Suppl. 2007; 63: 515–29.
14. Schwartz N., Verma A., Bivens C.B., Schwartz Z., Boyan B.D. Rapid steroid hormone actions via membrane receptors. Biochim Biophys Acta. 2016; 1863(9): 2289–98. doi: 10.1016/j.bbamcr.2016.06.004.
15. Borkowski A., Gyling M., Muquardt C., Body J.J., Leslercq G. Estrogen-like activity of a subpopulation of natural antiestrogen receptor autoantibodies in man. Endocrinology. 1991; 128(6): 3283–92. doi: 10.1210/endo-128-6-3283.
16. Tassignon J., Haeseleer F., Borkowski A. Natural antiestrogen receptor autoantibodies in man with estrogenic activity in mammary carcinoma cell culture: study of their mechanism of action; evidence for involvement of estrogen-like epitopes. J Clin Endocrinol Metab. 1997; 82(10): 3464–70. doi: 10.1210/jcem.82.10.4313.
17. Chaudhri R.A., Schwartz N., Elbaradie K., Schwartz Z., Boyan B.D. Role of ERα 36 in membrane-associated signaling by estrogen. Steroids. 2014; 81: 74–80. doi: 10.1016/j.steroids.2013.10.020.
18. Ortona E., Pierdominici M., Berstein L. Autoantibodies to estrogen receptors and their involvement in autoimmune diseases and cancer. J Steroid Biochem Mol Biol. 2014; 144: 260–7. doi: 10.1016/j.jsbmb.2014.07.004.
19. Sömjen D., Amir-Zaltsman Y., Mor G., Gayer B., Lichter S., Barnard G., Kohen F. Anti-idiotypic antibody as an oestrogen mimetic in vivo: stimulation of creatin kinase specific activity in rat animal models. J Endocrinol. 1996; 149(2): 305–12. doi: 10.1677/joe.0.1490305.
20. Sömjen D., Kohen F., Lieberherr M. Nongenomic effects of an anti-idiotypic antibody as an estrogen mimetic in female human and rat osteoblasts. J Cell Biochem. 1997; 65(1): 53–66. doi: 10.1002/(SICI)1097-4644(199704)65:1<53::AID-JCB6>3.0.CO;2-Y.
21. Maselli A., Capoccia S., Pugliese P., Raggi C., Cirulli F., Fabi A., Malorni W., Pierdominici M., Ortona E. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2015; 5(2). doi: 10.1080/2162402X.2015.1074375.
22. Polenok E.G., Gordeeva L.A., Mun S.A., Kostyanko M.V., Antonov A.V., Verzhbitskaya N.E., Bairamov P.V., Kolpinskiy G.I., Vafin I.A., Glushkov A.N. Cooperation of idiotypic and anti-idiotypic antibodies at the steroid-depended chemical carcinogenesis. Russian Journal of Immunology. 2023; 26(1): 27–40. (in Russian). doi: 10.46235/1028-7221-1177-COI.
23. Jerne N.K. Idiotypic networks and other preconceived ideas. Immunol Rev. 1984; 79: 5–24. doi: 10.1111/j.1600-065x.1984.tb00484.x.
24. Glushkov A.N., Polenok E.G., Mun S.A., Gordeeva L.A., Kostyanko M.V., Antonov A.V., Verzhbitskaya N.E., Vafin I.A. Personal immunological phenotype and breast cancer risk in postmenopausal women. Russian Journal of Immunology. 2019; 13(1): 44–52. (in Russian). doi: 10.31857/S102872210005019-5.
25. Greiner M., Pfeiffer D., Smith R.D. Principles and practical application of the receiver operating characteristic analysis for diagnostic test. Prev Vet Med. 2000; 45(1–2): 23–41. doi: 10.1016/s0167-5877(00)00115-x.
26. Pruthi S., Yang L., Sandhu N.P., Ingle J.N., Beseler C.L., Suman V.J., Cavalieri E.L., Rogan E.G. Evaluation of serum estrogen-DNA adducts as potential biomarkers for breast cancer risk. J. Steroid Biochem. Mol Biol. 2012; 132(1–2): 73–9. doi: 10.1016/j.jsbmb.2012.02.002.
27. Yang L., Zahid M., Liao Y., Rogan E.G., Cavalieri E.L., Davidson N.E., Yager J.D., Visvanathan K., Groopman J.D., Kensler T.W. Reduced formation of depurinating estrogen–DNA adducts by sulforaphane or KEAP1 disruption in human mammary epithelial MCF-10A cells. Carcinogenesis. 2013; 34(11): 2587–92. doi: 10.1093/carcin/bgt246.
28. Yager J.D. Mechanisms of estrogen carcinogenesis: The role of E2/E1–quinone metabolites suggests new approaches to preventive intervention – A review. Steroids. 2015; 99: 56–60. doi: 10.1016/j.steroids.2014.08.006.
29. Alluri P.G., Speers C., Chinnaiyan A.M. Estrogen receptor mutations and their role in breast cancer progression. Breast Cancer Res. 2014; 16(6): 494. doi: 10.1186/s13058-014-0494-7.
30. Harrod A., Lai C.-F., Goldsbrough I., Simmons G.M., Oppermans N., Santos D.B., Győrffy B., Allsopp R.C., Toghill B.J., Balachandran K., Lawson M., Morrow C.J., Surakala M., Carnevalli L.S., Zhang P., Guttery D.S., Shaw J.A., Coombes R.C., Buluwela L., Ali S. Genome engineering for estrogen receptor mutations reveals differential responses to antiestrogens and new prognostic gene signatures for breast cancer. Oncogene. 2022; 41(44): 4905–15. doi: 10.1038/s41388-022-02483-8.
31. Leclercq G. Natural anti-estrogen receptor alpha antibodies able to induce estrogenic responses in breast cancer cells: hypotheses concerning their mechanisms of action and emergence. Int J Mol Sci. 2018; 19(2): 411. doi: 10.3390/ijms19020411.
Review
For citations:
Glushkov A.N., Polenok E.G., Gordeeva L.A., Bayramov P.V., Verzhbitskaya N.E., Antonov A.V., Kolpinsky G.I., Kostyanko M.V. Antibodies and anti-antibodies specific to estradiol and progesterone and tumor proliferation in breast cancer patients. Siberian journal of oncology. 2024;23(3):73-85. (In Russ.) https://doi.org/10.21294/1814-4861-2024-23-3-73-85