Preview

Siberian journal of oncology

Advanced search

Challenges and prospects of using nanoscale therapeutic molecular compositions in oncology

https://doi.org/10.21294/1814-4861-2025-24-5-140-162

Abstract

Background. Advances in nanoparticle design technologies have enabled the development of numerous experimental molecular compositions that demonstrate high potential for improving traditional approaches to cancer treatment. However, only a few drugs successfully complete phase III clinical trials and receive approval for clinical use. Analysis of the advantages and disadvantages of nanomedicines, the challenges of their widespread medical application, and further development of this promising field are of undoubted interest to both experimental and clinical oncology.

Material and Methods. The results of a search in the scientific databases PubMed, Medline, in the scientific electronic library eLibrary.ru, as well as in the clinical trials registration database https://clinicaltrials.gov were analyzed for the following queries – keywords: nanoparticles, nanomaterials, nanomedicines and cancer (nanoparticles, nanomaterials and nanomedicines for cancer). For this literature review, 60 relevant articles by internastional and domestic authors published between 2015 and 2025 were selected.

Results. Nanosized molecular compositions offer advantages in cancer therapy primarily through selective tumor accumulation, which enables targeted delivery of antitumor agents and leads to increased therapeutic efficacy. The existing challenges in practical application of this group of drugs are associated with ensuring their stability and safety, as well as with the high variability of the tumor cell microenvironment.

Conclusion. The prospects of nanodrug development focus on integrating various nanomaterials with targeted ligands to deliver antitumor and immunomodulatory agents directly to tumors, with a focus on personalized strategies that consider individual tumor characteristics.

About the Authors

I. A. Olkhovskiy
Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences; Krasnoyarsk branch of the National Medical Research Center for Hematology; V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University
Russian Federation

Igor A. Olkhovskiy - MD, PhD, Senior Researcher, Krasnoyarsk Scientific Center of the SB RAS; Director, Krasnoyarsk branch of the National Medical Research Center for Hematology; Assistant Professor, Department of Cardiology, Functional and Clinical Laboratory Diagnostics, Institute of Postgraduate Education, V.F. Voyno-Yasenetsky Krasnoyarsk SMU.

50/45, Akademgorodok St., Krasnoyarsk, 660036; 50/45, Akademgorodok St., Krasnoyarsk, 660036; 1, P. Zeleznyak St., 660022, Krasnoyarsk



R. A. Zukov
A.I. Kryzhanovsky Krasnoyarsk Regional Clinical Oncology Center
Russian Federation

Ruslan A. Zukov - MD, DSc, Chief Physician, A.I. Kryzhanovsky Krasnoyarsk Regional Clinical Oncology Center; Head of the Department of Oncology and Radiation Therapy with a PO Course, V.F. Voyno-Yasenetsky Krasnoyarsk SMU.

16, Pervaya Smolenskaya St., Krasnoyarsk, 660133



M. A. Stolyar
Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Marina A. Stolyar - Laboratory Assistant.

50/45, Akademgorodok St., Krasnoyarsk, 660036



S. Li
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and Technology
China

Suping Li - CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience.

11, Zhongguancun Beiyitiao St., Beijing, 100190



References

1. Fan D., Cao Y., Cao M., Wang Y., Cao Y., Gong T. Nanomedicine in cancer therapy. Signal Transduct Target Ther. 2023; 8(1): 293. doi: 10.1038/s41392-023-01536-y.

2. Stanovaya A., Zhogla V., Galets-Buy I., Loznikova S., Shcherbin D. Nanoparticles in the treatment of malignant neoplasms. Science and Innovations. 2023; 1(4): 77–83. (in Russian). doi: 10.29235/1818-9857-2023-04-77-83. EDN: SECHOR.

3. Egwu C.O., Aloke C., Onwe K.T., Umoke C.I., Nwafor J., Eyo R.A., Chukwu J.A., Ufebe G.O., Ladokun J., Audu D.T., Agwu A.O., Obasi D.C., Okoro C.O. Nanomaterials in Drug Delivery: Strengths and Opportunities in Medicine. Molecules. 2024; 29(11): 2584. doi: 10.3390/molecules29112584.

4. Sun L., Liu H., Ye Y., Lei Y., Islam R., Tan S., Tong R., Miao Y.B., Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther. 2023; 8(1): 418. doi: 10.1038/s41392-023-01642-x.

5. Gavas S., Quazi S., Karpiński T.M. Nanoparticles for Cancer Therapy: Current Progress and Challenges. Nanoscale Res Lett. 2021; 16(1): 173. doi: 10.1186/s11671-021-03628-6.

6. Yao Y., Zhou Y., Liu L., Xu Y., Chen Q., Wang Y., Wu S., Deng Y., Zhang J., Shao A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci. 2020; 7: 193. doi: 10.3389/fmolb.2020.00193.

7. Liu X., Li M., Woo S. Subcellular Drug Distribution: Exploring Organelle-Specific Characteristics for Enhanced Therapeutic Efficacy. Pharmaceutics. 2024; 16(9): 1167. doi: 10.3390/pharmaceutics16091167.

8. Sharifi M., Cho W.C., Ansariesfahani A., Tarharoudi R., Malekisarvar H., Sari S., Bloukh S.H., Edis Z., Amin M., Gleghorn J.P., Hagen T.L.M.T., Falahati M. An Updated Review on EPR-Based Solid Tumor Targeting Nanocarriers for Cancer Treatment. Cancers (Basel). 2022; 14(12): 2868. doi: 10.3390/cancers14122868.

9. Anderson N.M., Simon M.C. The tumor microenvironment. Curr Biol. 2020; 30(16): R921–R925. doi: 10.1016/j.cub.2020.06.081.

10. Tie Y., Tang F., Wei Y.Q., Wei X.W. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol. 2022; 15(1): 61. doi: 10.1186/s13045-022-01282-8.

11. Ciepła J., Smolarczyk R. Tumor hypoxia unveiled: insights into microenvironment, detection tools and emerging therapies. Clin Exp Med. 2024; 235. doi: 10.1007/s10238-024-01501-1.

12. Dzhalilova D.S., Makarova O.V. HIF-dependent mechanisms of relationship between hypoxia tolerance and tumor development. Biochemistry. 2021; 86(10): 1403–22. (in Russian). doi: 10.31857/S0320972521100018. EDN: XCYACK.

13. Yan Y., Li H., Yao H., Cheng X. Nanodelivery Systems Delivering Hypoxia-Inducible Factor-1 Alpha Short Interfering RNA and Antisense Oligonucleotide for Cancer Treatment. Front. Nanotechnol. 2022; 4: 932976–93. doi: 10.3389/fnano.2022.932976.

14. Zi Y., Yang K., He J., Wu Z., Liu J., Zhang W. Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev. 2022; 188: 114449. doi: 10.1016/j.addr.2022.114449.

15. Ding H., Tan P., Fu S., Tian X., Zhang H., Ma X., Gu, Z., Luo K. Preparation and application of pH-responsivedrug delivery systems. J Control Release. 2022; 348: 206–38. doi: 10.1016/j.jconrel.2022.05.056.

16. Wang X., Zhang H., Chen X., Wu C., Ding K., Sun G., Luo Y., Xiang D. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery. Acta Biomater. 2023; 166: 42–68. doi: 10.1016/j.actbio.2023.05.043.

17. Sharifi M., Cho W.C., Ansariesfahani A., Tarharoudi R., Malekisarvar H., Sari S., Bloukh S.H., Edis Z., Amin M., Gleghorn J.P., Hagen T.L.M.T., Falahati M. An Updated Review on EPR-Based Solid Tumor Targeting Nanocarriers for Cancer Treatment. Cancers (Basel). 2022; 14(12): 2868. doi: 10.3390/cancers14122868.

18. Gholami A., Mohkam M., Soleimanian S., Sadraeian M., Lauto A. Bacterial nanotechnology as a paradigm in targeted cancer therapeutic delivery and immunotherapy. Microsyst Nanoeng. 2024; 10: 113. doi: 10.1038/s41378-024-00743-z.

19. Dutta B., Barick K.C., Hassan P.A. Recent advances in active targeting of nanomaterials for anticancer drug delivery. Adv Colloid Interface Sci. 2021; 296: 102509. doi: 10.1016/j.cis.2021.102509.

20. Akentieva N.P., Topunov A.F. The role of peptides in theranostics of oncological diseases. Moscow, 2021. 172 p. (in Russian). ISBN: 978-5-907366-48-0. EDN: HLNAQM.

21. Beach M.A., Nayanathara U., Gao Y., Zhang C., Xiong Y., Wang Y., Such G.K. Polymeric Nanoparticles for Drug Delivery. Chem Rev. 2024; 124(9): 5505–616. doi: 10.1021/acs.chemrev.3c00705.

22. Dilliard S.A., Cheng Q., Siegwart D.J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc Natl Acad Sci USA. 2021; 118(52): e2109256118. doi: 10.1073/pnas.2109256118.

23. Liu C., Zhang L., Zhu W., Guo R., Sun H., Chen X., Deng N. Barriers and Strategies of Cationic Liposomes for Cancer Gene Therapy. Mol Ther Methods Clin Dev. 2020; 18: 751–64. doi: 10.1016/j.omtm.2020.07.015.

24. Zhang D., Wang G., Yu X., Wei T., Farbiak L., Johnson L.T., Taylor A.M., Xu J., Hong Y., Zhu H., Siegwart D.J. Enhancing CRISPR/ Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat Nanotechnol. 2022; 17(7): 777–87. doi: 10.1038/s41565-022-01122-3.

25. Rao L., Zhao S.K., Wen C., Tian R., Lin L., Cai B., Sun Y., Kang F., Yang Z., He L., Mu J., Meng Q.F., Yao G., Xie N., Chen X. Activating Macrophage-Mediated Cancer Immunotherapy by Genetically Edited Nanoparticles. Adv Mater. 2020; 32(47): e2004853. doi: 10.1002/adma.202004853.

26. Wang D., Dong H., Li M., Cao Y., Yang F., Zhang K., Dai W., Wang C., Zhang X. Erythrocyte-Cancer Hybrid Membrane Camouflaged Hollow Copper Sulfide Nanoparticles for Prolonged Circulation Life and Homotypic-Targeting Photothermal/Chemotherapy of Melanoma. ACS Nano. 2018; 12(6): 5241–52. doi: 10.1021/acsnano.7b08355.

27. Li S., Lu Z., Wu S., Chu T., Li B., Qi F., Zhao Y., Nie G. The dynamic role of platelets in cancer progression and their therapeutic implications. Nat Rev Cancer. 2024; 24(1): 72–87. doi: 10.1038/s41568-023-00639-6.

28. Li X., Hu L., Tan C., Wang X., Ran Q., Chen L., Li Z. Plateletpromoting drug delivery efficiency for inhibition of tumor growth, metastasis, and recurrence. Front Oncol. 2022; 12: 983874. doi: 10.3389/fonc.2022.983874.

29. Huang H., Wang X., Gao Z., Bao H., Yuan X., Chen C., Xia D., Wang X. A Platelet-Powered Drug Delivery System for Enhancing Chemotherapy Efficacy for Liver Cancer Using the Trojan Horse Strategy. Pharmaceutics. 2024; 16(7): 905. doi: 10.3390/pharmaceutics16070905.

30. Tian J., Gao M., Zhu J., Xu H., Ji H., Xia D., Wang X. Platelets camouflaged nanovehicle improved bladder cancer immunotherapy by triggering pyroptosis. Theranostics. 2024; 14(17): 6692–707. doi: 10.7150/thno.99040.

31. Wang J., Zhu M., Nie G. Biomembrane-based nanostructures for cancer targeting and therapy: From synthetic liposomes to natural biomembranes and membrane-vesicles. Adv Drug Deliv Rev. 2021; 178: 113974. doi: 10.1016/j.addr.2021.113974.

32. Zocchi M.R., Tosetti F., Benelli R., Poggi A. Cancer Nanomedicine Special Issue Review Anticancer Drug Delivery with Nanoparticles: Extracellular Vesicles or Synthetic Nanobeads as Therapeutic Tools for Conventional Treatment or Immunotherapy. Cancers (Basel). 2020; 12(7): 1886. doi: 10.3390/cancers12071886.

33. Yong T., Zhang X., Bie N., Zhang H., Zhang X., Li F., Hakeem A., Hu J., Gan L., Santos H.A., Yang X. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat Commun. 2019; 10(1): 3838. doi: 10.1038/s41467-019-11718-4.

34. Qu N., Song K., Ji Y., Liu M., Chen L., Lee R.J., Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine. 2024; 19: 6945–80. doi: 10.2147/IJN.S467876.

35. Delfi M., Sartorius R., Ashrafizadeh M., Sharifi E., Zhang Y., de Berardinis P., Zarrabi A., Varma R.S., Tay F.R., Smith B.R., Makvandi P. Self-assembled peptide and protein nanostructures for anti-cancer therapy: Targeted delivery, stimuli-responsive devices and immunotherapy. Nano Today. 2021; 38: 101119. doi: 10.1016/j.nantod.2021.101119.

36. Hong F., Zhang F., Liu Y., Yan H. DNA Origami: Scaffolds for Creating Higher Order Structures. Chem Rev. 2017; 117(20): 12584–640. doi: 10.1021/acs.chemrev.6b00825.

37. Fan Q., Li Z., Yin J., Xie M., Cui M., Fan C., Wang L., Chao J. Inhalable pH-responsive DNA tetrahedron nanoplatform for boosting anti-tumor immune responses against metastatic lung cancer. Biomaterials. 2023; 301: 122283. doi: 10.1016/j.biomaterials.2023.122283.

38. Zhang T., Tian T., Zhou R., Li S., Ma W., Zhang Y., Liu N., Shi S., Li Q., Xie X., Ge Y., Liu M., Zhang Q., Lin S., Cai X., Lin Y. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat Protoc. 2020; 15(8): 2728–57. doi: 10.1038/s41596-020-0355-z.

39. Hheidari A., Mohammadi J., Ghodousi M., Mahmoodi M., Ebrahimi S., Pishbin E., Rahdar A. Metal-based nanoparticle in cancer treatment: lessons learned and challenges. Front Bioeng Biotechnol. 2024; 12: doi: 10.3389/fbioe.2024.1436297.

40. Gulyaev Yu.V., Taranov I.V., Khomutov G.B., Koksharov Yu.A. Magnetic nanoparticles of iron oxides in medical radioelectronics. Journal of Radio Electronics. 2023; 12. (in Russian). doi: 10.30898/1684-1719.2023.12.6. EDN: EQVDUB.

41. Li Y., Zhang P., Tang W., McHugh K.J., Kershaw S.V., Jiao M., Huang X., Kalytchuk S., Perkinson C.F., Yue S., Qiao Y., Zhu L., Jing L., Gao M., Han B. Bright, Magnetic NIR-II Quantum Dot Probe for Sensitive Dual-Modality Imaging and Intensive Combination Therapy of Cancer. ACS Nano. 2022; 16(5): 8076–94. doi: 10.1021/acsnano.2c01153.

42. Li Y., Zhou J., Wang L., Xie Z. Endogenous Hydrogen Sulfide-Triggered MOF-Based Nanoenzyme for Synergic Cancer Therapy. ACS Appl Mater Interfaces. 2020; 12(27): 30213–20. doi: 10.1021/acsami.0c08659.

43. Xiao W., Zhao L., Sun Y., Yang X., Fu Q. Stimuli-Responsive Nanoradiosensitizers for Enhanced Cancer Radiotherapy. Small Methods. 2024; 8(1): e2301131. doi: 10.1002/smtd.202301131.

44. Bonvalot S., Rutkowski P.L., Thariat J., Carrere S., Ducassou A., Sunyach M.P., Agoston P., Hong A., Mervoyer A., Rastrelli M., Moreno V., Li R.K., Tiangco B., Herraez A.C., Gronchi A., Mangel L., Sy-Ortin T., Hohenberger P., de Baère T., Le Cesne A., Helfre S., Saada-Bouzid E., Borkowska A., Anghel R., Co A., Gebhart M., Kantor G., Montero A., Loong H.H., Vergés R., Lapeire L., Dema S., Kacso G., Austen L., Moureau-Zabotto L., Servois V., Wardelmann E., Terrier P., Lazar A.J., Bovée J.V.M.G., Le Péchoux C., Papai Z. NBTXR3, afirst-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): amulticentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 2019. 20; 8: 1148–59. doi: 10.1016/S1470-2045(19)30326-2.

45. Gong L., Zhang Y., Zhao J., Zhang Y., Tu K., Jiao L., Xu Q., Zhang M., Han S. All-In-One Biomimetic Nanoplatform Based on Hollow Polydopamine Nanoparticles for Synergistically Enhanced Radiotherapy of Colon Cancer. Small. 2022; 18(41): e2205198. doi: 10.1002/smll.202205198.

46. Feng L., Chen M., Li R., Zhou L., Wang C., Ye P., Hu X., Yang J., Sun Y., Zhu Z., Fang K., Chai K., Shi S., Dong C. Biodegradable oxygenproducing manganese-chelated metal organic frameworks for tumortargeted synergistic chemo/photothermal/ photodynamic therapy. Acta Biomater. 2022; 138: 463–77. doi: 10.1016/j.actbio.2021.10.032.

47. van Keulen S., Hom M., White H., Rosenthal E.L., Baik F.M. The Evolution of Fluorescence-Guided Surgery. Mol Imaging Biol. 2023; 25(1): 36–45. doi: 10.1007/s11307-022-01772-8.

48. Mainini F., Eccles M.R. Lipid and Polymer-Based Nanoparticle siRNA Delivery Systems for Cancer Therapy. Molecules. 2020; 25(11): 2692. doi: 10.3390/molecules25112692.

49. Liu Y., Wen Y., Chen X., Zhu X., Yu Q., Gong Y., Yuan G., Liu J., Qin X. Inflammation-responsive functional Ru nanoparticles combining a tumor-associated macrophage repolarization strategy with phototherapy for colorectal cancer therapy. J Mater Chem B. 2019; 7(40): 6210–23. doi: 10.1039/c9tb01613a.

50. Sato K., Sato N., Xu B., Nakamura Y., Nagaya T., Choyke P.L., Hasegawa Y., Kobayashi H. Spatially selective depletion of tumor-associated regulatory T cells with near-infrared photoimmunotherapy. Sci Transl Med. 2016; 8(352): 352ra110. doi: 10.1126/scitranslmed.aaf6843.

51. Liu T., Yao W., Sun W., Yuan Y., Liu C., Liu X., Wang X., Jiang H. Components, Formulations, Deliveries, and Combinations of Tumor Vaccines. ACS Nano. 2024; 18(29): 18801–33. doi: 10.1021/acsnano.4c05065.

52. Laureano R.S., Sprooten J., Vanmeerbeerk I., Borras D.M., Govaerts J., Naulaerts S., Berneman Z.N., Beuselinck B., Bol K.F., Borst J., Coosemans A., Datsi A., Fučíková J., Kinget L., Neyns B., Schreibelt G., Smits E., Sorg R.V., Spisek R., Thielemans K., Tuyaerts S., de Vleeschouwer S., de Vries I.J.M., Xiao Y., Garg A.D. Trial watch: Dendritic cell (DC)-based immunotherapy for cancer. Oncoimmunology. 2022; 11(1): 2096363. doi: 10.1080/2162402X.2022.2096363.

53. Besse B., Felip E., Garcia Campelo R., Cobo M., Mascaux C., Madroszyk A., Cappuzzo F., Hilgers W., Romano G., Denis F., Viteri S., Debieuvre D., Galetta D., Baldini E., Razaq M., Robinet G., Maio M., Delmonte A., Roch B., Masson P., Schuette W., Zer A., Remon J., Costantini D., Vasseur B., Dziadziuszko R., Giaccone G. ATALANTE-1 study group. Randomized open-label controlled study of cancer vaccine OSE2101 versus chemotherapy in HLA-A2-positive patients with advanced non-small-cell lung cancer with resistance to immunotherapy: ATALANTE-1. Ann Oncol. 2023; 34(10): 920–33. doi: 10.1016/j.annonc.2023.07.006.

54. Ding Z., Li Q., Zhang R., Xie L., Shu Y., Gao S., Wang P., Su X., Qin Y., Wang Y., Fang J., Zhu Z., Xia X., Wei G., Wang H., Qian H., Guo X., Gao Z., Wang Y., Wei Y., Xu Q., Xu H., Yang L. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther. 2021; 6(1): 26. doi: 10.1038/s41392-020-00448-5.

55. Sun H., Zhang Y., Wang G., Yang W., Xu Y. mRNA-Based Therapeutics in Cancer Treatment. Pharmaceutics. 2023; 15(2): 622. doi: 10.3390/ pharmaceutics15020622.

56. Starostina E.V., Nizolenko L.F., Karpenko L.I., Ilyichev A.A. Antitumor mRNA vaccines based on neoantigens. Siberian Journal of Oncology. 2024; 23(6): 149–58. (in Russian). doi: 10.21294/1814-4861-2024-23-6-149-158. EDN: YKGUBZ.

57. Aikins M.E., Xu C., Moon J.J. Engineered Nanoparticles for Cancer Vaccination and Immunotherapy. Acc Chem Res. 2020; 53(10): 2094–2105. doi: 10.1021/acs.accounts.0c00456.

58. Palmer C.D., Rappaport A.R., Davis M.J., Hart M.G., Scallan C.D., Hong S.J., Gitlin L., Kraemer L.D., Kounlavouth S., Yang A., Smith L., Schenk D., Skoberne M., Taquechel K., Marrali M., Jaroslavsky J.R., Nganje C.N., Maloney E., Zhou R., Navarro-Gomez D., Greene A.C., Grotenbreg G., Greer R., Blair W., Cao M.D., Chan S., Bae K., Spira A.I., Roychowdhury S., Carbone D.P., Henick B.S., Drake C.G., Solomon B.J., Ahn D.H., Mahipal A., Maron S.B., Johnson B., Rousseau R., Yelensky R,. Liao C.Y., Catenacci D.V.T., Allen A., Ferguson A.R., Jooss K. Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results. Nat Med. 2022; 28(8): 1619–29. doi: 10.1038/s41591022-01937-6.

59. Li H., Peng K., Yang K., Ma W., Qi S., Yu X., He J., Lin X., Yu G. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics. 2022; 12(14): 6422–36. doi: 10.7150/thno.77350.

60. Tockary T.A., Abbasi S., Matsui-Masai M., Hayashi A., Yoshinaga N., Boonstra E., Wang Z., Fukushima S., Kataoka K., Uchida S. Comb-structured mRNA vaccine tethered with short double-stranded RNA adjuvants maximizes cellular immunity for cancer treatment. Proc Natl Acad Sci USA. 2023; 120(29): e2214320120. doi: 10.1073/pnas.2214320120.

61. Rojas L.A., Sethna Z., Soares K.C., Olcese C., Pang N., Patterson E., Lihm J., Ceglia N., Guasp P., Chu A., Yu R., Chandra A.K., Waters T., Ruan J., Amisaki M., Zebboudj A., Odgerel Z., Payne G., Derhovanessian E., Müller F., Rhee I., Yadav M., Dobrin A., Sadelain M., Łuksza M., Cohen N., Tang L., Basturk O., Gönen M., Katz S., Do R.K., Epstein A.S., Momtaz P., Park W., Sugarman R., Varghese A.M., Won E., Desai A., Wei A.C., D’Angelica M.I., Kingham T.P., Mellman I., Merghoub T., Wolchok J.D., Sahin U., Türeci Ö., Greenbaum B.D., Jarnagin W.R., Drebin J., O’Reilly E.M., Balachandran V.P. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023; 618(7963): 144–50. doi: 10.1038/s41586-023-06063-y.

62. Weber J.S., Carlino M.S., Khattak A., Meniawy T., Ansstas G., Taylor M.H., Kim K.B., McKean M., Long G.V., Sullivan R.J., Faries M., Tran T.T., Cowey C.L, Pecora A., Shaheen M., Segar J., Medina T., Atkinson V., Gibney G.T., Luke J.J., Thomas S., Buchbinder E.I., Healy J.A., Huang M., Morrissey M., Feldman I., Sehgal V., Robert-Tissot C., Hou P., Zhu L., Brown M., Aanur P., Meehan R.S., Zaks T. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet. 2024; 403(10427): 632–44. doi: 10.1016/S01406736(23)02268-7.


Review

For citations:


Olkhovskiy I.A., Zukov R.A., Stolyar M.A., Li S. Challenges and prospects of using nanoscale therapeutic molecular compositions in oncology. Siberian journal of oncology. 2025;24(5):140-162. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-5-140-162

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)