Preview

Siberian journal of oncology

Advanced search

Tropolone and its derivatives: structure, synthesis, application in medicine (review)

https://doi.org/10.21294/1814-4861-2025-24-5-163-170

Abstract

Introduction. Tropolones and their derivatives are members of a family of natural products containing a tropolonoid motif, a unique cyclohepta-2,4,6-trienone fragment, which constitutes a seven-membered nonbenzenoid aromatic ring. Following the advent of organic chemistry, a substantial number of novel tropolone derivatives have been synthesized and identified. In the past decade, the number of publications employing these substances has exceeded 350. the objective of the present review was to provide a concise summary of the extant published data concerning the structural characteristics, methods of synthesis, and applications in various medical disciplines of tropolone series compounds.

Material and Methods. A comprehensive literature search was conducted using the PubMed, eLibrary, and Google Scholar databases. The search was conducted using the keywords “tropolone,” “chemical structure of tropolones,” “synthesis of tropolones,” and “biological activity of tropolones”. Of the 535 literature sources that were selected for study, 39 publications were analyzed in detail. The review includes studies from 1936 to 2024.

Results. The structural characterization of tropolones, the chemical synthesis of tropolones through diverse methodologies involving sixand seven-membered carbon rings, and the cyclization and cycloaddition reactions, are addressed. Additionally, the preparation of new compounds through the condensation of tropolone with other functional groups is discussed. A review of contemporary studies conducted on tumor cell cultures, various types of bacteria, and laboratory animals reveals that tropolone series compounds exhibit a broad spectrum of biological effects. This renders them promising lead molecules for the development of various drugs. The primary mechanism of tropolones involves the coordination of cations at the active centers of metalloenzymes. The authors of the extant works propose various pathways and targets of their action.

Conclusion. Tropolones exhibit a broad spectrum of biological activity, encompassing antiviral, antimicrobial, and antitumor properties. The study of the structure-activity relationship, coupled with the accumulation of information on the chemical and physical properties of the obtained substances, has led to the development of more effective methods of synthesis and the production of tropolone series compounds with improved efficiency and selectivity. This efficacy has been confirmed in both in vitro and in vivo studies. However, the precise mechanism(s) through which tropolones exert their biological effects remain to be elucidated. Consequently, further research in this area is imperative to elucidate the precise mechanisms of tropolones.

About the Authors

D. V. Khodakova
National Medical Research Centre for Oncology, Ministry of Health Russia
Russian Federation

Darya V. Khodakova - Researcher, Testing Laboratory Center, Researcher ID (WOS): MCK-3167-2025. Author ID (Scopus): 57221463056.

63, 14th Line St., Rostov-on-Don, 344037



A. S. Goncharova
National Medical Research Centre for Oncology, Ministry of Health Russia
Russian Federation

Anna S. Goncharova - PhD, Head of the Testing Laboratory Center, Author ID (Scopus): 57215862139.

63, 14th Line St., Rostov-on-Don, 344037



A. V. Galina
National Medical Research Centre for Oncology, Ministry of Health Russia
Russian Federation

Anastasia V. Galina - Junior Researcher, Testing Laboratory Center, Author ID (Scopus): 57221460594.

63, 14th Line St., Rostov-on-Don, 344037



S. V. Gurova
National Medical Research Centre for Oncology, Ministry of Health Russia
Russian Federation

Sofia V. Gurova - Junior Researcher, Testing Laboratory Center.

63, 14th Line St., Rostov-on-Don, 344037



I. V. Golovinov
National Medical Research Centre for Oncology, Ministry of Health Russia
Russian Federation

Igor V. Golovinov - Junior Researcher, Testing Laboratory Center.

63, 14th Line St., Rostov-on-Don, 344037



A. A. Shulga
National Medical Research Centre for Oncology, Ministry of Health Russia
Russian Federation

Anna A. Shulga - Junior Researcher, Testing Laboratory Center.

63, 14th Line St., Rostov-on-Don, 344037



D. V. Kamlyk
National Medical Research Centre for Oncology, Ministry of Health Russia
Russian Federation

Dmitry V. Kamlyk - Postgraduate, Department of Abdominal Oncology No. 1.

63, 14th Line St., Rostov-on-Don, 344037



References

1. Pinjari R.R., Siddiqui A., Ahmed N.A. Concepts of alkaloids from natural sources. Newcastle upon Tyne: Cambridge Scholars Publishing, 2024: 146.

2. Dewar M.J.S. Structure of stipitatic acid. Nature. 1945; 155(3924): 50–51. doi: 10.1038/155050b0.

3. Ahluwalia V.K., Aggarwal R. Tropones and tropolones. 2023. 195–98. (Alicyclic Chemistry. 2th ed. Cham: Springer). doi: 10.1007/9783-031-36068-8_13.

4. Pal D., Lal P. Tropolones and Thailandepsin B as lead-like natural compounds in the development of potent and selective histone deacetylase inhibitors. Current Drug Targets. 2023; 24(9): 698–717. doi: 10.2174/1389450124666230707144251.

5. Kit O.I., Zhukova G.V., Tolkachev O.N., Sidelnikov N.I., Fadeev N.B., Lukbanova E.A., Shikhlyarova A.I. Antitumor factors of natural origin and some approaches to the development of effective regimens of phytotherapy in oncology (literature review including the findings of authors’ own research). Problems in Oncology. 2022; 68(5): 527–38. (in Russian). doi: 10.37469/0507-3758-2022-68-5-527-538. EDN: BTTJTN.

6. Nozoe T. Über die farbstoffe im holzteile des “hinokl”-baumes. i. hinokitin und hinokitiol (Vorläufige Mitteilung). Bulletin of the Chemical Society of Japan. 1936; 11(3): 295–98. doi: 10.1246/bcsj.11.295.

7. Hongjie L.I.A.N.G., Siyu L.I. Research overview of secondary metabolite hinokitiol from plant. Chinese Journal of Pesticide Science. 2023; 25(4): 779–87. doi: 10.16801/j.issn.1008-7303.2023.0045.

8. Sardana K., Sinha S., Sachdeva S. Colchicine in dermatology: Rediscovering an old drug with novel uses. Indian Dermatol Online J. 2020; 11(5): 693–700. doi: 10.4103/idoj.IDOJ_475_20.

9. Mitev V. Colchicine-the divine medicine against COVID-19. J Pers Med. 2024; 14(7): 756. doi: 10.3390/jpm14070756.

10. Khaletskiy A.M. Pharmaceutical chemistry. Leningrad., 1966: 763 p. (in Russian).

11. Schiavone D.V., Kapkayeva D.M., Li Q., Woodson M.E., Gazquez Casals A., Morrison L.A. Tavis J.E., Murelli R.P. Synthesis of polyoxygenated tropolones and their antiviral activity against hepatitis B virus and herpes simplex virus‐1. Chemistry. 2022; 28(10): e202104112. doi: 10.1002/chem.202104112.

12. Liu N., Song W., Schienebeck C.M., Zhang M., Tang W. Synthesis of naturally occurring tropones and tropolones. Tetrahedron. 2014; 70(49): 9281–305. doi: 10.1016/j.tet.2014.07.065.

13. Guo H., Roman D., Beemelmanns C. Tropolone natural products. Natural Product Reports. 2019; 36(8): 1137–55. doi: 10.1039/c8np00078f.

14. Cook J.W., Dickson G.T., Jack J., Loudon J.D., McKeown J., MacMillan J., Williamson W.F. 30. Colchicine and related compounds. Part IX. Journal of the Chemical Society (Resumed). 1950; 139–47. doi: 10.1039/jr9500000139.

15. Doering W.V.E., Knox L.H. Synthesis of tropolone. Journal of the American Chemical Society. 1950; 72(5): 2305–306. doi: 10.1021/ja01161a533.

16. Coşkun A., Güney M., Daştan A., Balci M. Oxidation of some alkoxy-cycloheptatriene derivatives: unusual formation of furan and furanoids from cycloheptatrienes. Tetrahedron. 2007; 63(23): 4944–50. doi: 10.1016/j.tet.2007.03.145.

17. Meck C., Mohd N., Murelli R.P. An oxidopyrylium cyclization/ring-opening route to polysubstituted α-hydroxytropolones. Organic Letters. 2012; 14(23): 5988–91. doi: 10.1021/ol302892g.

18. Pradhan P., Das I., Debnath S., Parveen S., Das T. Synthesis of substituted tropones and advancement for the construction of structurally significant skeletons. Chemistry Select. 2022; 7(23): e202200440. doi: 10.1002/slct.202200440.

19. Gusakov E.A., Sayapin Y.A., Vetrova E.V., Lukbanova E.A., Alilueva E.V., Kolodina A.A., Tkachev V.V., Tupaeva I.O., Lisovin A.V., Steglenko D.V., Krasnikova T.A., Nikogosov M.V., Goncharova A.S., Metelitsa A.V., Aldoshin S.M., Minkin V.I. Synthesis, molecular structure and biological activity of novel bis-1, 3-tropolones based on 4-chloro-2, 7-dimethyl-1, 8-naphthyridine. Mendeleev Communications. 2024; 34(3): 357–61. doi: 10.1016/j.mencom.2024.04.015.

20. Mark M. The international problem of HIV/AIDS in the modern world: a comprehensive review of political, economic, and social impacts. Res Output J Public Health Med. 2024; 42: 47–52. doi: 10.59298/ROJPHM/2024/414752.

21. Wei F., da Silva-Júnior E.F., Liu X., Zhan P. HIV-1 and HBV RNase H as metal-chelating inhibitors: discovery and medicinal chemistry strategies. 2021. P. 585–602. (Shamim I., Ahmad, Ed. Human Viruses: Diseases, Treatments and Vaccines; Wollaton, Nottingham. Springer. 2021. 745 p. doi: 10.1007/978-3-030-71165-8. ISBN: 978-3-030-71164-1.

22. World Health Organization. Hepatitis B. [Internet]. [cited 08.01.2025]. URL: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b.

23. Woodson M.E., Mottaleb M.A., Murelli R.P., Tavis J.E. In vitro evaluation of tropolone absorption, metabolism, and clearance. Antiviral Res. 2023; 220: 105762. doi: 10.1016/j.antiviral.2023.105762.

24. World Health Organization. Herpes simplex virus. [Internet]. [cited 08.01.2025]. URL: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus.

25. Cao K., Zhang Y., Yao Q., Peng Y., Pan Q., Jiao Q., Ren K., Sun F., Zhang Q., Guo R., Zhang J., Chen T. Hypericin blocks the function of HSV-1 alkaline nuclease and suppresses viral replication. J Ethnopharmacol. 2022; 296: 115524. doi: 10.1016/j.jep.2022.115524.

26. Wan J., Wang M., Cheng A., Zhang W., Yang Q., Tian B., Ou X., Sun D., He Y., Zhao X., Wu Y., Zhang S., Huang J., Wu Z., Yu Y., Zhang L., Zhu D., Liu M., Chen S., Jia R. Multiple functions of the herpesvirus UL14 gene product in viral infection. Front Microbiol. 2024; 15: 1483022. doi: 10.3389/fmicb.2024.1483022.

27. Cao F., Orth C., Donlin M.J., Adegboyega P., Meyers M.J., Murelli R.P., Elagawany M., Elgendy B., Tavis J.E. Synthesis and evaluation of troponoids as a new class of antibiotics. ACS Omega. 2018; 3(11): 15125–33. doi: 10.1021/acsomega.8b01754.

28. Nakano K., Chigira T., Miyafusa T., Nagatoishi S., Caaveiro J.M., Tsumoto K. Discovery and characterization of natural tropolones as inhibitors of the antibacterial target CapF from Staphylococcus aureus. Sci Rep. 2015; 5(1): 15337. doi: 10.1038/srep15337.

29. Le C.Y., Ye Y.J., Xu J., Li L., Feng X.Q., Chen N.P., Zhu B.Q., Ding Z.S., Qian C.D. Hinokitiol selectively enhances the antibacterial activity of tetracyclines against Staphylococcus aureus. MicrobiolSpectr. 2023; 11(2): e03205-22. doi: 10.1128/spectrum.03205-22.

30. Siegel R.L., Miller K.D., Wagle N.S., Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023; 73(1): 17–48. doi: 10.3322/caac.21763.

31. Liu B., Zhou H., Tan L., Siu K.T.H., Guan X.Y. Exploring treatment options in cancer: tumor treatment strategies. Signal Transduct Target Ther. 2024; 9(1): 175. doi: 10.1038/s41392-024-01856-7.

32. Tursunova N.V., Churin B.V., Klinnikova M.G. Anti-tumor activity of some natural compounds. Modern Problems of Science and Education. 2018; (5): 201. (in Russian). doi: 10.17513/spno.28056. EDN: YMRMKL.

33. Haney S.L., Feng D., Kollala S.S., Chhonker Y.S., Varney M.L., Williams J.T., Ford J.B., Murry D.J., Holstein S.A. Investigation of the activity of a novel tropolone in osteosarcoma. Drug Develop Res. 2024; 85(1): e22129. doi: 10.1002/ddr.22129.

34. Chiang Y.F., Huang K.C., Chen H.Y., Hamdy N.M., Huang T.C., Chang H.Y., Shieh T.M., Huang Y.J., Hsia S.M. Hinokitiol inhibits breast cancer cells in vitro stemness-progression and self-renewal with apoptosis and autophagy modulation via the CD44/Nanog/SOX2/Oct4 pathway. Int J Mol Sci. 2024; 25(7): 3904. doi: 10.3390/ijms25073904.

35. Haas M., Lenz T., Kadletz-Wanke L., Heiduschka G., Jank B.J. The radiosensitizing effect of β-Thujaplicin, a tropolone derivative inducing S-phase cell cycle arrest, in head and neck squamous cell carcinomaderived cell lines. Invest New Drugs. 2022; 40(4): 700–708. doi: 10.1007/s10637-022-01229-3.

36. Ibragimov A.A., Enikeeva Z.M., Agzamova N.A., Salihov F.S., Rahimov O.A., Askarova M.T. Investigation of mechanism activity of antitumor and radiosensitizing activity of preparations К-26 and K-26w. Am J Biomed Life Sci. 2020; 8(5): 131–36. doi: 10.11648/j.ajbls.20200805.12.

37. Komarova E.F., Lukbanova E.A., Dzhenkova E.A., Goncharova A.S., Zaikina E.V., Gurova S.V., Galina A.V., Kurbanova L.K., Mindar M.V., Khodakova D.V., Gusareva M.S., Zinkovich M.S. Immunohistochemical assessment of possible anticancer effect mechanisms of 2-(6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)-5,6,7trichloro-1,3-tropolone in PDX models of lung cancer. South Russian Journal of Cancer. 2023; 4(1): 6–13. (in Russian). doi: 10.37748/26869039-2023-4-1-1. EDN: ATEHFO.

38. Ni Y.J., Huang Z.N., Li H.Y., Lee C.C., Tyan Y.C., Yang M.H., Pangilinan C.R., Wu L.H., Chiang Y.C., Lee C.H. Hinokitiol impedes tumor drug resistance by suppressing protein kinase B/mammalian targets of rapamycin axis. J Cancer. 2022; 13(6): 1725–33. doi: 10.7150/jca.69449.

39. Wang D.D., Zhang R., Tang L.Y., Ao M.R., Jia J.M., Wang A.H. Identification of diterpenoids from Salvia castanea Diels f. tomentosa Stib and their antitumor activities. Bioorg Chem. 2024; 151: 107701. doi: 10.1016/j.bioorg.2024.107701.


Review

For citations:


Khodakova D.V., Goncharova A.S., Galina A.V., Gurova S.V., Golovinov I.V., Shulga A.A., Kamlyk D.V. Tropolone and its derivatives: structure, synthesis, application in medicine (review). Siberian journal of oncology. 2025;24(5):163-170. https://doi.org/10.21294/1814-4861-2025-24-5-163-170

Views: 15


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-4861 (Print)
ISSN 2312-3168 (Online)