Chronic opisthorchiasis invasion as a factor aggravating the development of cholangiocellular carcinoma. A literature review
https://doi.org/10.21294/1814-4861-2025-24-5-171-179
Abstract
Objective: to summarize current literature data indicating the feasibility of using invasive and non-invasive procedures for the early detection of cholangiocarcinoma, and to identify associations with chronic opisthorchiasis invasion.
Material and Methods. A literature search was conducted using Web of Science, PubMed, Scopus, Google Scholar, and Elibrary.ru databases. Over 200 publications on the diagnosis, prevalence, and treatment methods of cholangiocellular liver cancer were analyzed, with 59 included in the final review. Statistically significant relationships were found between chronic opisthorchiasis and an increased incidence of cholangiocellular carcinoma.
Results. Early detection and treatment methods ofcholangiocarcinoma remain challenging. The complexity of verifying hepatic duct cancer stems from its varied locations, its tendency to be asymptomatic until advanced stages, and the absence of specific, reliable early diagnostic tests. Surgical treatment of liver tumors does not always satisfy both patients and physicians due to low 5-year survival rates, high complication rates, and late presentation of patients for medical care. In addition, there is a difficulty in managing the preoperative period due to the need to compensate for the functional state of the liver, hypocoagulation and normalization of protein-electrolyte metabolism disorders due to rapidly developing mechanical jaundice.
Conclusion. Early deworming of opisthorchiasis is one of the factors in the prevention of liver cancer, and timely decompression of the bile ducts in cases of mechanical jaundice increases survival and reduces the incidence of complications, potentially allowing for more radical treatment. Of crucial importance is the ongoing search for non-invasive diagnostic methods for the early detection of liver cancer, which focuses on the analysis of the molecular composition of biological fluids and tissues. Bile mass spectrometry in patients with chronic opisthorchiasis can potentially lead to new diagnostic methods for bile duct cancer and help improve treatment outcomes.
Keywords
About the Authors
V. V. IvanovRussian Federation
Vladimir V. Ivanov - PhD, Associate Professor, Head of the Preclinical Research Cente.
2, Moskovsky trakt, Tomsk, 634050
T. B. Komkova
Russian Federation
Tatyana B. Komkova - MD, DSc, Professor, Head of the Department of Surgical Diseases with a course of Traumatology and Orthopedics.
2, Moskovsky trakt, Tomsk, 634050
E. A. Perina
Russian Federation
Ekaterina A. Perina - Junior Researcher, Preclinical Research Center.
2, Moskovsky trakt, Tomsk, 634050
L. Yu. Petrov
Russian Federation
Lev Yu. Petrov - MD, PhD, Associate Professor, Department of Surgical Diseases with a course of Traumatology and Orthopedics.
2, Moskovsky trakt, Tomsk, 634050
E. V. Udut
Russian Federation
Elena V. Udut - MD, DSc, Head of the Central Research Laboratory.
2, Moskovsky trakt, Tomsk, 634050
E. S. Khmelevskaya
Russian Federation
Ekaterina S. Khmelevskaya - MD, PhD, Researcher, Center for Biological Research and Bioengineering of the Central Research Laboratory.
2, Moskovsky trakt, Tomsk, 634050
References
1. Brazhnikova N.A., Tolkaeva M.V. Cancer of liver, biliary tracts and pancreas at chronic opisthorchosis. Bulletin of Siberian Medicine. 2002; 1(2): 71–77. (in Russian). doi: 10.20538/1682-0363-2002-2-71-77. EDN: SBSJBR.
2. Gouveia M.J., Pakharukova M.Y., Laha T., Sripa B., Maksimova G.A., Rinaldi G., Brindley P.J., Mordvinov V.A., Amaro T., Santos L.L., Costa J.M.C.D., Vale N. Infection with Opisthorchis felineus induces intraepithelial neoplasia of the biliary tract in a rodent model. Carcinogenesis. 2017; 38(9): 929–37. doi: 10.1093/carcin/bgx042.
3. Jaikaew J., Songserm N., Charoenbut P., Thongchai C., Chada W. Environmental Management for Opisthorchis viverrini and Cholangiocarcinoma Prevention in a High-Risk Area of Thailand: The KALMeFS Model. Asian Pac J Cancer Prev. 2024; 25(12): 4305–11. doi: 10.31557/APJCP.2024.25.12.4305.
4. Bugaev S.A., Varava A.B., Vetsheva N.N., Vishnevsky V.A., Granov D.A., Grishankov S.A., Gurmikov B.N., Ershova A.Yu., Zharikov Yu.O., Ikramov R.Z., Kalinin D.V., Karelskaya N.A., Karmazanovsky G.G., Kovalenko Yu.A., Marinova L.A., Polikarpov A.A., Tarazov P.G., Tupikin K.A., Tsygankov V.N., Zhao A.V., Shipilova A.N. Kholilov angiocellular carcinoma. Ed. of A.V. Zhao. Moscow, 2021. 368 p. (in Russian). ISBN: 978-5-9704-5955-3. doi: 10.33029/9704-5955-3-СС-2021-1-368. EDN: NYJQZZ.
5. Steele J.A., Richter C.H., Echaubard P., Saenna P., Stout V., Sithithaworn P., Wilcox B.A. Thinking beyond Opisthorchis viverrini for risk of cholangiocarcinoma in the lower Mekong region: a systematic review and meta-analysis. Infect Dis Poverty. 2018; 7(1): 44. doi: 10.1186/s40249-018-0434-3.
6. Cancer statistics in Russia and the CIS countries in 2009. Ed. by M.I. Davydov and E.M. Aksel. Bulletin of the N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences. 2011; 22(3s1). (in Russian).
7. Fedorov N.M., Rybka A.G. Risk Factors of Cholangiocarcinogenesis in Parasitization of a Natural Focal Ecopathogen Helminth Opisthorchis felineus. Bulletin of Nizhnevartovsk State University. 2022; (4): 98–112. (in Russian). doi: 10.36906/2311-4444/22-4/10. EDN: QLWLRY.
8. Khuntikeo N., Thinkhamrop B., Crellen T., Eamudomkarn C., Petney T.N., Andrews R.H., Sithithaworn P. Epidemiology and Control of Opisthorchis viverrini Infection: Implications for Cholangiocarcinoma Prevention. Recent Results Cancer Res. 2023; 219: 27–52. doi: 10.1007/978-3-031-35166-2_3.
9. Fedorova O.S., Kovshirina Y.V., Kovshirina A.E., Fedotova M.M., Deev I.A., Petrovskiy F.I., Filimonov A.V., Dmitrieva A.I., Kudyakov L.A., Saltykova I.V., Odermatt P., Ogorodova L.M. Opisthorchis felineus infection and cholangiocarcinoma in the Russian Federation: A review of medical statistics. Parasitol Int. 2017; 66(4): 365–71. doi: 10.1016/j.parint.2016.07.010.
10. Moonsan S., Songserm N., Woradet S., Suksatan W. Effects of Health Literacy Promotion Programs for Preventing Opisthorchiasis and Cholangiocarcinoma: a Systematic Review and Meta-analysis. J Cancer Educ. 2023; 38(4): 1322–29. doi: 10.1007/s13187-023-02265-0.
11. Homsana A., Southisavath P., Kling K., Hattendorf J., Vorasane S., Paris D.H., Probst-Hensch N., Sayasone S., Odermatt P. Burden and risk factors of suspected cholangiocarcinoma in high Opisthorchis viverrini endemic rural communities in southern Lao PDR. PLoS Negl Trop Dis. 2024; 18(11): e0012617. doi: 10.1371/journal.pntd.0012617.
12. Woo H., Han J.K., Kim J.H., Hong S.T., Uddin M.H., Jang J.J. In vivo monitoring of development of cholangiocarcinoma induced with C. sinensis and N-nitrosodimethylamine in Syrian golen hamsters using ultrasonography and magnetic resonance imaging: a preliminary study. Eur Radiol. 2017; 27(4): 1740–47. doi: 10.1007/s00330-016-4510-4.
13. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Biological agents. IARC Monogr Eval Carcinog Risks Hum. 2012; 100(Pt B): 1–441.
14. Songserm N., Srithongtham O., Thongchai C., Joomjee R., Sansiritawisuk G. Investigation of Social Innovations for Handling Opisthorchis viverrini and Cholangiocarcinoma in Thailand’s Highest-Risk Areas for Further Development of Successful Solution. Asian Pac J Cancer Prev. 2024; 25(8): 2911–17. doi: 10.31557/APJCP.2024.25.8.2911.
15. Prasopdee S., Rojthongpond T., Chitkoolsamphan Y., Pholhelm M., Yusuk S., Pattaraarchachai J., Butthongkomvong K., Kulsantiwong J., Phanaksri T., Kunjantarachot A., Tesana S., Sathavornmanee T., Thitapakorn V. Update on the risk factors for opisthorchiasis and cholangiocarcinoma in Thailand. Parasites Hosts Dis. 2023; 61(4): 463–70. doi: 10.3347/PHD.23032.
16. Kafle A., Suttiprapa S., Muhammad M., Tenorio J.C.B., Mahato R.K., Sahimin N., Loong S.K. Epigenetic Biomarkers and the Wnt/β-Catenin Pathway in Opisthorchis viverrini-associated Cholangiocarcinoma: A Scoping Review on Therapeutic Opportunities. PLoS Negl Trop Dis. 2024; 18(9): e0012477. doi: 10.1371/journal.pntd.0012477.
17. Prokhorov B.B. Opisthorchiasis. Web-Atlas: Environment and Health of the Population of Russia. 5.7. Population Morbidity. Infectious Diseases: Biohelminthiasis. 1998. (in Russian). [Internet]. [cited 01.08.2024]. URL: http://www.sci. aha.ru/ATL/ra55g.htm.
18. Bronshtejn A.M., Kozlov S.S., Malyshev N.A., Burova S.V., Maksimova M.S., Fedyanina L.V., Davydova I.V. Аcute infection of opisthorchis felineus in Moscow: casesfrom delivered fish and cases in tourists travelledto endemic regions in Russia. Journal Infectology. 2019; 11(1): 76–83. (in Russia). doi: 10.22625/2072-6732-2019-11-1-76-83. EDN: NFQSZN.
19. Fedorova O.S., Fedotova M.M., Zvonareva O.I., Mazeina S.V., Kovshirina Y.V., Sokolova T.S., Golovach E.A., Kovshirina A.E., Konovalova U.V., Kolomeets I.L., Gutor S.S., Petrov V.A., Hattendorf J., Ogorodova L.M., Odermatt P. Opisthorchis felineus infection, risks, and morbidity in rural Western Siberia, Russian Federation. PLoS Negl Trop Dis. 2020; 14(6): e0008421. doi: 10.1371/journal.pntd.0008421.
20. Simakova A.V., Chitnis N., Babkina I.B., Fedorova O.S., Fedotova M.M., Babkin A.M., Khodkevich N.E. Abundance of Opisthorchis felineus Metacercariae in cyprinid fish in the middle Ob River basin (Tomsk region, Russia). Food Waterborne Parasitol. 2021; 22: e00113. doi: 10.1016/j.fawpar.2021.e00113.
21. Pakharukova M.Y., Mordvinov V.A. The liver fluke Opisthorchis felineus: biology, epidemiology and carcinogenic potential. Trans R Soc Trop Med Hyg. 2016; 110(1): 28–36. doi: 10.1093/trstmh/trv085.
22. Merzlikin N.V., Tskhai V.F., Podgornov V.F., Petrov L.Yu., Sarueva A.P., Noroeva T.A., Grishchenko M.Yu., Sled N.Yu. Pathomorphology and surgical aspects of complicated and concomitant opisthorchiasis. Problems in Reconstructive and Plastic Surgery. 2020; 23: 1(72): 36–47. (in Russian). doi: 10.17223/1814147/72/04. EDN: JWFFTI.
23. Fedorova O.S., Kovshirina A.E., Kovshirina Y.V., Hattendorf J., Onishchenko S.V., Katanakhova L.L., Taslicki S.S., Chizhikov A.V., Tataurov I.A., Vtorushin S.V., Sripa B., Ogorodova L.M., Odermatt P. Opisthorchis Felineus Infection is a Risk Factor for Cholangiocarcinoma in Western Siberia: A Hospital-based Case-control Study. Clin Infect Dis. 2023; 76(3): 1392–98. doi: 10.1093/cid/ciac497.
24. Hayashi H., Shimizu A., Kubota K., Notake T., Masuo H., Yoshizawa T., Hosoda K., Sakai H., Yasukawa K., Soejima Y. Accuracy and limitations of preoperative assessment of longitudinal spread of perihilar cholangiocarcinoma. Asian J Surg. 2023; 46(11): 4743–48. doi: 10.1016/j.asjsur.2023.03.166.
25. Nagino M. Hepatopancreatoduodenectomy with simultaneous resection of the portal vein and hepatic artery: Ultimate superextended surgery for advanced perihilar cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2022; 29(6): 597–99. doi: 10.1002/jhbp.1102.
26. Baer H.U., Stain S.C., Dennison A.R., Eggers B., Blumgart L.H. Improvements in survival by aggressive resections of hilar cholangiocarcinoma. Ann Surg. 1993; 217(1): 20–27. doi: 10.1097/00000658199301000-00005.
27. Ratti F., Marino R., Pedica F., Gardini A.C., Cipriani F., Rimini M., Della Corte A., Cascinu S., de Cobelli F., Colombo M., Aldrighetti L. Radial and longitudinal margins in surgery of perihilar cholangiocarcinoma: When R1 definition is associated with different prognosis. Surgery. 2023; 174(3): 447–56. doi: 10.1016/j.surg.2023.05.014.
28. Dondorf F., Rohland O., Deeb A.A., Ardelt M., Settmacher U., Rauchfuss F. Value of palliative surgery in perihilar cholangiocarcinoma. Langenbecks Arch Surg. 2023; 408(1): 128. doi: 10.1007/s00423-02302854-z.
29. Ratti F., Cipriani F., Lee Y., Marino R., Catena M., Aldrighetti L. Minimally-invasive Right Hepatectomy for Perihilar Cholangiocarcinoma. Chirurgia (Bucur). 2022; 117(1): 110–13. doi: 10.21614/chirurgia.2634.online.ahead.of.print.nov30.
30. Elvevi A., Laffusa A., Scaravaglio M., Rossi R.E., Longarini R., Stagno A.M., Cristoferi L., Ciaccio A., Cortinovis D.L., Invernizzi P., Massironi S. Clinical treatment of cholangiocarcinoma: an updated comprehensive review. Ann Hepatol. 2022; 27(5): 100737. doi: 10.1016/j.aohep.2022.100737.
31. Neuzillet C., Decraecker M., Larrue H., Ntanda-Nwandji L.C., Barbier L., Barge S., Belle A., Chagneau C., Edeline J., Guettier C., Huguet F., Jacques J., Le Bail B., Leblanc S., Lewin M., Malka D., Ronot M., Vendrely V., Vibert É., Bureau C., Bourliere M., Ganne-Carrie N., Blanc J.F. Management of intrahepatic and perihilar cholangiocarcinomas: Guidelines of the French Association for the Study of the Liver (AFEF). Liver Int. 2024; 44(10): 2517–37. doi: 10.1111/liv.15948.
32. Ratti F., Marino R., Olthof P.B., Pratschke J., Erdmann J.I., Neumann U.P., Prasad R., Jarnagin W.R., Schnitzbauer A.A., Cescon M., Guglielmi A., Lang H., Nadalin S., Topal B., Maithel S.K., Hoogwater F.J.H., Alikhanov R., Troisi R., Sparrelid E., Roberts K.J., Malagò M., Hagendoorn J., Malik H.Z., Olde Damink S.W.M., Kazemier G., Schadde E., Charco R., de Reuver P.R., Groot Koerkamp B., Aldrighetti L.; Perihilar Cholangiocarcinoma Collaboration Group. Predicting futility of upfront surgery in perihilar cholangiocarcinoma: Machine learning analytics model to optimize treatment allocation. Hepatology. 2024; 79(2): 341–54. doi: 10.1097/HEP.0000000000000554.
33. Ethun C.G., Lopez-Aguiar A.G., Anderson D.J., Adams A.B., Fields R.C., Doyle M.B., Chapman W.C., Krasnick B.A., Weber S.M., Mezrich J.D., Salem A., Pawlik T.M., Poultsides G., Tran T.B., Idrees K., Isom C.A., Martin R.C.G., Scoggins C.R., Shen P., Mogal H.D., Schmidt C., Beal E., Hatzaras I., Shenoy R., Cardona K., Maithel S.K. Transplantation Versus Resection for Hilar Cholangiocarcinoma: An Argument for Shifting Treatment Paradigms for Resectable Disease. Ann Surg. 2018; 267(5): 797–805. doi: 10.1097/SLA.0000000000002574.
34. Aoyagi Y., Gaudenzi F., Wakabayashi T., Teshigahara Y., Nie Y., Wakabayashi G. Robotic surgery for perihilar cholangiocarcinoma: a concise systematic review. Surg Endosc. 2025; 39(4): 2701–10. doi: 10.1007/s00464-025-11650-3.
35. Mizuno T., Ebata T., Yokoyama Y., Igami T., Yamaguchi J., Onoe S., Watanabe N., Kamei Y., Nagino M. Combined Vascular Resection for Locally Advanced Perihilar Cholangiocarcinoma. Ann Surg. 2022; 275(2): 382–90. doi: 10.1097/SLA.0000000000004322.
36. Esmail A., Badheeb M., Alnahar B., Almiqlash B., Sakr Y., Khasawneh B., Al-Najjar E., Al-Rawi H., Abudayyeh A., Rayyan Y., Abdelrahim M. Cholangiocarcinoma: The Current Status of Surgical Options including Liver Transplantation. Cancers (Basel). 2024; 16(11): 1946. doi: 10.3390/cancers16111946.
37. Breder V.V. Cancer of the biliary system. Practical Oncology. 2012; 13(4): 269–75. (in Russian). EDN: PUHUPH.
38. Tarazov P.G., Kagacheva T.I. Adiological and endovascular interventions in treatment of intrahepatic cholangiocarcinoma (Literature review). Diagnostic and Interventional Radiology. 2021; 15(3): 55–66. (in Russian). doi: 10.25512/DIR.2021.15.3.06. EDN: UQAAGU.
39. Gkika E., Hallauer L., Kirste S., Adebahr S., Bartl N., Neeff H.P., Fritsch R., Brass V., Nestle U., Grosu A.L., Brunner T.B. Stereotactic body radiotherapy (SBRT) for locally advanced intrahepatic and extrahepatic cholangiocarcinoma. BMC Cancer. 2017; 17(1): 781. doi: 10.1186/s12885-017-3788-1.
40. Peregudova M.V., Zaretsky A.R., Breder V.V., Romanova K.A., Moroz E.A., Laktionov K.K., Lukyanov S.A. The effectiveness of targeted therapy in a patient with BRAF-positive metastatic cholangiocarcinoma. Experimental and Clinical Gastroenterology. 2017; 8: 87–90. (in Russian). EDN: ZFVVCF.
41. Gritskevich A.A., Gurmikov B.N., Baitman T.P., Shipilova A.N., Paichadze A.A., Zhao A.V. Cholangiocarcinogenesis and targeted therapy for cholangiocarcinoma. Medical Council. 2021; (20): 101–109. (in Russian). doi: 10.21518/2079-701X-2021-20-101-109. EDN: ZJCNUV.
42. Fritsch R. Durvalumab Plus Chemotherapy for Advanced Biliary Tract Cancer Treatment: Insights from the TOPAZ-1 Trial. healthbook TIMES Onco Hema. 2024; 21(3): 48–55. doi: 10.36000/HBT.OH.2024.21.157.
43. Greten T.F., Schwabe R., Bardeesy N., Ma L., Goyal L., Kelley R.K., Wang X.W. Immunology and immunotherapy of cholangiocarcinoma. Nat Rev Gastroenterol Hepatol. 2023; 20: 349–65. doi: 10.1038/s41575022-00741-4.
44. Ji G.W., Xu Z.G., Cao S.Y., Wang K., Wang X.H. [Current status and future perspectives on the methods of prognosis evaluation for intrahepatic cholangiocarcinoma]. Zhonghua Wai Ke Za Zhi. 2023; 61(6): 467–73. Chinese. doi: 10.3760/cma.j.cn112139-20221008-00424.
45. Yuan Z.G., Zeng T.M., Tao C.J. Current and emerging immunotherapeutic approaches for biliary tract cancers. Hepatobiliary Pancreat Dis Int. 2022; 21(5): 440–49. doi: 10.1016/j.hbpd.2022.08.015.
46. Breder V.V., Bazin I.S., Kosyrev V.Yu., Ledin E.V. Practical recommendations for the drug treatment of biliary cancer. Malignant tumors. 2021; 11(3S2-1): 452–67. (in Russian). doi: 10.18027/2224-5057-2021-11-3s2-26. EDN: BHVLVM.
47. Breder V.V., Ledin E.V., Chubenko V.A., Orlova R.V., Petkau V.V., Pokataev I.A. Place of durvalumab in the treatment of biliary tract cancer: a review. Modern Oncology. 2022; 24(4): 407–12. (in Russian). doi: 10.26442/18151434.2022.4.202006. EDN: SOFWQU.
48. Wu X., Li B., Zheng C. Clinicopathologic characteristics and long-term prognosis of intraductal papillary neoplasm of the bile duct: a retrospective study. Eur J Med Res. 2023; 28(1): 132. doi: 10.1186/s40001-023-01102-w.
49. Benson A.B. 3rd, Abrams T.A., Ben-Josef E., Bloomston P.M., Botha J.F., Clary B.M., Covey A., Curley S.A., D’Angelica M.I., Davila R., Ensminger W.D., Gibbs J.F., Laheru D., Malafa M.P., Marrero J., Meranze S.G., Mulvihill S.J., Park J.O., Posey J.A., Sachdev J., Salem R., Sigurdson E.R., Sofocleous C., Vauthey J.N., Venook A.P., Goff L.W., Yen Y., Zhu A.X. NCCN clinical practice guidelines in oncology: hepatobiliary cancers. J Natl Compr Canc Netw. 2009; 7(4): 350–91. doi: 10.6004/jnccn.2009.0027.
50. Prasopdee S., Pholhelm M., Yusuk S., Tangphatsornruang S., Butthongkomvong K., Kunjantarachot A., Phanaksri T., Kulsantiwong J., Tesana S., Thitapakorn V. Investigation of Plasma Cell-Free DNA and MiRNA in Cholangiocarcinoma and Opisthorchiasis Viverrini Patients. Asian Pac J Cancer Prev. 2024; 25(3): 739–46. doi: 10.31557/APJCP.2024.25.3.739.
51. Rozhentsov A.A., Koptina A.V., Mitrakov A.A., Sharipova T., Tsapaev I., Ryzhkov V.L., Lychagin K.A., Furina R.R., Mitrakova N.N. A New Method to Diagnose Cancer Based on Image Analysis of Mass Chromatograms of Volatile Organic Compounds in Urine. Modern Technology in Medicine. 2014; 6(4): 151–59. (in Russian). EDN: TFASAR.
52. Zharikov Yu.O., Kovalenko Yu.A., Chzhao A.V. Biomolecular prognostic factors in Klatskin tumor. N.I. Pirogov Russian Journal of Surgery. 2016; (5): 82–85. (in Russian). doi: 10.17116/hirurgia2016582-85. EDN: WANFBX.
53. Supradit K., Prasopdee S., Phanaksri T., Tangphatsornruang S., Pholhelm M., Yusuk S., Butthongkomvong K., Wongprasert K., Kulsantiwong J., Chukan A., Tesana S., Thitapakorn V. Differential circulating miRNA profiles identified miR-423-5p, miR-93-5p, and miR-4532 as potential biomarkers for cholangiocarcinoma diagnosis. Peer J. 2024; 12: e18367. doi: 10.7717/peerj.18367.
54. Prasopdee S., Tongsima S., Pholhelm M., Yusuk S., Tangphatsornruang S., Butthongkomvong K., Phanaksri T., Kunjantarachot A., Kulsantiwong J., Tesana S., Sathavornmanee T., Thitapakorn V. Biomarker potential of plasma cell-free DNA for cholangiocarcinoma. Heliyon. 2024; 10(24): e41008. doi: 10.1016/j.heliyon.2024.e41008.
55. Supradit K., Wongprasert K., Tangphatsornruang S., Yoocha T., Sonthirod C., Pootakham W., Thitapakorn V., Butthongkomvong K., Phanaksri T., Kunjantarachot A., Klongprateeppon H., Sattavacharavech P., Prasopdee S. microRNA profiling of exosomes derived from plasma and their potential as biomarkers for Opisthorchis viverrini-associated cholangiocarcinoma. Acta Trop. 2024; 258: 107362. doi: 10.1016/j.actatropica.2024.107362.
56. Gurmikov B.N., Kovalenko Yu.A., Vishnevsky V.A., Zhao A.V. Molecular genetic aspects of intrahepatic cholangiocellular cancer: review of the literature. Advances in Molecular Oncology. 2019; 6(1): 37–43. (in Russian). doi: 10.17650/2313-805X-2019-6-1-37-43. EDN: NEHEGY.
57. Bukharina A.B., Pento A.V., Simanovsky Ya.O., Nikiforov S.M. Mass spectrometry of volatile organic compounds during ionization by laser plasma radiation. Quantum Electronics. 2021; 51(5): 393–99. (in Russian). EDN: OCIUAW.
58. Khmelevskaya E.S., Perina E.A., Buyko E.E., Ufandeev A.A., Kaidash O.A., Ivanov V.V., Baikov A.N., Parochkina E.V., Udut E.V. Precision medicine in oncology: role and prospects of mass spectrometry. Bulletin of Siberian Medicine. 2024; 23(2): 162–82. (in Russian). doi: 10.20538/1682-03632024-2-162-182. EDN: NGTJEW.
59. Trifonov S.A., Kovalenko Yu.A., Savelyeva T.V., Glotov A.V., Gurmikov B.N., Zhao A.V., Chugunov A.O. Intraductal papillary tumor of the bile duct against the background of opisthorchiasis: a clinical observation. Surgeon. 2023; 1–2: 45–52. (in Russian). doi: 10.33920/med-15-2301-06. EDN: NCQAWZ.
Review
For citations:
Ivanov V.V., Komkova T.B., Perina E.A., Petrov L.Yu., Udut E.V., Khmelevskaya E.S. Chronic opisthorchiasis invasion as a factor aggravating the development of cholangiocellular carcinoma. A literature review. Siberian journal of oncology. 2025;24(5):171-179. (In Russ.) https://doi.org/10.21294/1814-4861-2025-24-5-171-179








































